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Abstract

We argue that cooperation can become more fragile if (i) there are sufficiently

many intermediate levels of cooperation and (ii) players cannot respond with large

punishments to small deviations. A failure to credibly commit to disproportionate

punishments can stem from legal or political feasibility, or from historical precedent.

Specifically, we show that regardless of how patient the players are, any prisoner’s

dilemma game can be extended with intermediate levels of cooperation in such a way

that full conflict is the only equilibrium outcome of the extended game in a class of

strategies with limited punishment.
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1 Introduction

In his seminal book, “The Strategy of Conflict,” Thomas Schelling spoke of the difficulty

of committing to a big retaliation in response to a small provocation. He was suggesting

that in the face of this difficulty the possibility to wage a limited war, i.e. the availability
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of intermediate actions, might prevent the conflict from escalating: “if it [the threat] can be

decomposed into a series of consecutive smaller threats, there is an opportunity to demon-

strate on the first few transgressions that the threat will be carried out on the rest.” More

specifically, in the context of a repeated prisoner’s dilemma situation, Schelling suggested

that the presence of intermediate actions might actually allow for deescalation of conflict

(see pp. 45–46).

At the same time, many historical conflicts arguably have evolved through a series of

escalating steps before they broke into large scale military engagements. Initial provocations

were typically met with counter-measures, which, although considered to be proportionate

at the time, failed to prevent the consequent escalation. In this paper, we argue that such

escalations can arise if—contrary to Schelling’s intuition—there is a sufficiently large number

of intermediate steps, and if—contrary to folk political wisdom—punishments are restricted

to being proportionate. Specifically, we show that in the absence of a credible commitment

to a full-out retaliation, for any prisoner’s dilemma game and any choice of discount factor

cooperation can break down if there is a sufficient number of suitably chosen intermediate

actions.

The underlying mechanism, that we study in detail further, can be demonstrated using

the following prisoner’s dilemma game as an example:

C D

C 7, 7 0, 11

D 11, 0 3, 3

The cooperative outcome (C,C) can be supported as an equilibrium in every round of a

repeated game as long as 11 + 3δ/(1− δ) ≤ 7/(1− δ) or δ ≥ 1/2.

Now, suppose that an intermediate level of cooperation (or conflict) is available:

C D′ D

C 7, 7 1, 10 0, 11

D′ 10, 1 5, 5 1, 8

D 11, 0 8, 1 3, 3

Further, suppose that the players cannot punish deviations from C to D′ by playing D. For

example, and judging by the existing precedents, the Unites States is unlikely to respond

with a large scale military engagement (D) following a single act of a cyber attack against
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the US (D′). Consequently, if a player considers a deviation to D′, she can reasonably expect

to be punished with the same action D′ rather than with D. In this case, the deviation from

(C,C) is profitable if 10 + 5δ/(1− δ) > 7/(1− δ) or δ < 3/5. If we suppose that (D′, D′) is

played as a steady state, then a deviation to D is also profitable as long as δ < 3/5. Thus,

for any δ ∈ [1/2, 3/5) cooperation can be sustained as an equilibrium outcome in the smaller

game (or in a game with strong punishments) but it is not sustainable in the extended game

when punishments are limited.

We can generalize the preceding example by studying a prisoner’s dilemma game with

an arbitrary number of intermediate levels of deviation (or cooperation). We will further

assume that grim strategies cannot be used credibly, i.e. a player cannot respond with a

punishment that is stronger than the original deviation. Given our assumption on propor-

tional punishments, we will show that irrespective of how patient the players are, there are

intermediate levels of deviation such that no cooperative equilibria exist.

We view our primary assumptions as representative of the real international relations.

Firstly, countries can indeed engage in cooperation or conflict on various levels: from for-

eign direct investments to financial sanctions, from coordinated development of global IT

networks to cyber warfare, from technological cooperation to espionage, from joint military

exercises to locating strategic military installations closer to their opponents. Secondly, we

see that actions in the international arena mostly cause proportionate responses, and hence

are expected to be of such nature. Examples abound: trade tariffs, expulsions of diplomats,

military exercises, proxy wars. Countries are forced to respond to provocations to maintain

the opponents’ beliefs in their resolve, but they are careful not to escalate the situation. Yet,

as we argue, this general approach might in itself lead to escalation.

Our assumptions not only fit those situations where open conflicts arise but they are

also suitable to study the build-up of tensions prior to a potential conflict. In particular, in

arm races there are multiple intermediate levels of armament and the players typically play

symmetric response strategies in expanding their arsenals. What we argue then, is that even

if no player were to consider it profitable to go from zero armament to, say, having nuclear

capabilities in one go, the same players might end up with nuclear arsenals nevertheless if

sufficiently many intermediate levels of armament are possible and if neither opponent can

commit to a grim strategy.

We contribute to the literature that studies conflicts by highlighting a new dimension to
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the commitment problem, the one that only arises when intermediate levels of cooperation

(or conflict) are considered. While multi-stage games of conflict have been considered in the

earlier literature, see e.g. Powell (1987) or the setup in Bueno de Mesquita et al. (1997),1

there are not many papers with an emphasis on the intermediate levels of conflict in con-

nection with the proportionality of responses. The only paper that we know of and the one

with a setup most similar to ours is McGinnis (1991), who models intermediate levels of

cooperation as a sequence of overlapping prisoner’s dilemma games. He shows that if the

payoff function takes a specific log-linear form, then the equilibrium will likely be sustained

at one of the intermediate levels of cooperation. In contrast with McGinnis, we study a gen-

eral payoff structure and show that a more extreme outcome—namely, no cooperation—is

always a possibility.

The literature on prisoner’s dilemma with intermediate actions is also relatively scarce.

Snidal (1985) shows that new strategic difficulties arise in such games, e.g., having multiple

Pareto-efficient outcomes instead of just one. He does not, however, speak of the possibility

of conflict escalation. In an independent work, Langlois (1989) explicitly allows for conflict

escalation. He considers a repeated prisoner’s dilemma game with a continuum of intermedi-

ate actions coupled with linear payoffs, and he shows that there exists a Markov equilibrium

in linear strategies that can sustain full cooperation. In comparison with our work, Langlois

does not impose any restrictions on the degree of punishment, whereas such restrictions are

the main focus of our discussion.

In a later work, Friedman and Samuelson (1990) analyze repeated games with continu-

ous payoffs, thus similar to Langlois (1989), but the authors restrict the punishment to be

proportional to the deviation. If the deviation approaches zero, so does the punishment.

Friedman and Samuelson consider reference dependent strategies, and show that that if the

discount factor is large enough, then with these strategies it is possible to construct a deesca-

lating equilibrium despite having limited punishment. In contrast, we consider the limiting

behaviour of discrete games and simpler “tit-for-tat” style strategies. We arrive at the op-

posite conclusion: for every value of the discount factor there are games with sufficiently

many intermediate actions where escalation cannot be precluded. The difference between

our result and that of Friedman and Samuelson (1990) arises due to different interpretations

of what a small punishment is: a proportional action in our case and a punishment propor-

1The equilibria analysis in the paper is erroneous, see Molinari (2000).
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tional to gains in payoffs in their case. We discuss this crucial difference in more detail at

the end of the paper. In their later work, Friedman and Samuelson (1994) showed that the

Folk Theorem of Fudenberg and Maskin (1986) can be extended to games with continuous

reaction functions.

Lastly, there is a group of papers that study prisoner’s dilemma games with intermediate

actions in an evolutionary setting: To (1988), Frean (1996), Wahl and Nowak (1999), Darwen

and Yao (2002). All these papers assume either linear or restricted quadratic payoffs and

none of them documents escalating dynamics. In contrast, we study whether there are payoff

structures, not necessarily linear, that can lead to escalating dynamics.

2 General Analysis

In this section we present and discuss our general result. Consider an arbitrary prisoner’s

dilemma game:

Γ =

A\B C D

C R,R S, T

D T, S P, P

where T > R > P > S and 2R > T + S.

If this game is played once, then the only Nash equilibrium is (D,D). If we consider a

repeated version of this game, then (C,C) can be sustained in an equilibrium if and only if

the discount factor δ ≥ T−R
T−P

.

Game Γ has two levels of cooperation: full cooperation and full defection. Broadly speak-

ing, we want to ask the following question: what happens with the cooperative equilibrium

if we add intermediate levels of conflict to game Γ? To make this question precise, we need

to define what we mean by a game with intermediate levels of conflict or cooperation; we

also need to define the class of strategies that we plan to study.

For any N > 2 we define class GN of games with N levels of cooperation as follows. Each

element ΓN ∈ GN is a game between two players, A and B, where each player can choose an

action a ∈ {1, . . . , N}. Choosing a = 1 means full cooperation, choosing a = N means full

defection. For each action choice (a, b) the payoff for player A is uA(a, b) and for player B it

is uB(a, b). We consider symmetric games, namely uA(a, b) = uB(b, a) = u(a, b). We further

impose that for any a, b, and c such that 1 ≤ a < b ≤ N and 1 ≤ c ≤ N the following

restrictions hold for the payoff matrix:
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1. u(1, 1) = R, u(N, 1) = T , u(1, N) = S, u(N,N) = P ,

2. u(b, c) > u(a, c), u(c, b) < u(c, a),

3. u(a, a) > u(b, b), and 2u(a, a) > u(a, b) + u(b, a).

Condition 1 (consistency) means that full cooperation and full conflict lead to the same

outcomes as in the original game Γ. Condition 2 (monotonicity) guarantees that intermediate

actions generate intermediate payoffs. Finally, condition 3 (prisoner’s dilemma) means that

every 2 × 2 principal submatrix of the payoff matrix can itself be viewed as a prisoner’s

dilemma game. We impose Condition 3 to avoid local changes in the strategic nature of the

game when intermediate actions are added. For example, this condition helps us to exclude

games where local escalation is mutually profitable. Note that the games in a given GN

are characterised by the same set of players and actions but differ in their payoff functions,

which, however, must be compatible with conditions 1–3.

We consider an infinitely repeated game, where each stage game is some fixed ΓN ∈ GN .

We assume that both players discount their payoffs with the same discount factor δ.

Finally, for a given N we limit our attention to equilibria in the class of strategies ΣN ,

where each element σ ∈ ΣN is defined as follows:

1. start play with some action a0 ∈ {1, . . . , N − 1},

2. in any round t play at = max{at−1, bt−1}, where at−1, bt−1 are actions played in the

previous round.

In other words, in ΣN the punishment never exceeds the deviation. We therefore call such

strategies “Markovian strategies with limited punishment.”

Note that elements in ΣN differ only in their starting points, namely action a0. Further,

as every ΓN ∈ GN has the same set of players and actions, ΣN is well-defined for any ΓN ∈ GN .

Any original game Γ has an equilibrium in Σ2 strategies if δ is large enough. (We label

C as 1 and D as 2.) This is the equilibrium where each player starts with a = 1, and (1, 1)

remains a steady state from there on. However, as the number of actions increases, strategies

with limited punishment might fail to deliver an equilibrium in ΓN . This is formally captured

by the following proposition.

Proposition 1. For any δ < 1 there is N large enough and a game ΓN ∈ GN such that no

pair of strategies (σ, σ), with σ ∈ ΣN , constitutes an equilibrium in ΓN .
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Proof. See the appendix.

Our proof is constructive. We explicitly build games ΓN using a discretization of a

suitably chosen continuous payoff function. Our construction is by no means unique and

many other examples that lead to full conflict can be made. The main requirement for

any such construction is that there are sufficient incentives for deviation around cooperative

outcomes, while the payoffs remain sufficiently bounded so as to satisfy conditions 1–3. Such

construction implies a sufficiently steep increase of the payoffs one step off the main diagonal,

which, as we discuss later, can be characterized by the Lipschitz constant.

However, it is easy to see that not every game with a large number of intermediate actions

leads to a break-down of cooperation. For example, if the game is extended “uniformly,” i.e.

with payoffs defined linearly along the main diagonal, linearly above it (triangle R−S−P ),

and linearly below it (triangle R − T − P ), then all the incentives of the original game are

preserved, the critical value of the discount factor remains the same, and the additional

intermediate actions do not result in escalation.2

A generalization of “uniformly” extended games where cooperation would survive the

addition of intermediate actions are games with sufficiently smooth payoffs. In what follows

we provide a partial characterization of this class of games.

Define

G̃N = {ΓN ∈ GN : u(a, a) = R− (R− P )(a− 1)/(N − 1) ∀ a}.

That is, G̃N is a restriction of GN to games with payoffs that are uniformly spaced along the

main diagonal. Our example in the introduction belongs to this class of games. Further, for

K ∈ R>0 define

ĜN(K) =

{
ΓN ∈ GN : |u(a, b)− u(c, d)| ≤ K

N − 1
max{|a− c|, |b− d|} ∀ a, b, c, d

}
.

Namely, ĜN(K) is a restriction of GN to games with an upper bound on how fast payoffs can

change in response to changes in actions. Formally, ĜN(K) is a restriction of GN to games

with Lipschitz-continuous payoffs of modulus K, where for any given N the action space

metric that we use is the maximum metric scaled by N − 1. Finally, denote

δ0 = 1− R− P

2(T − S)
.

With these definitions in mind, we have

2It is straightforward to show that this “uniform” extension belongs to class GN .
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Proposition 2. For any δ ≥ δ0, N ≥ 2 and for any K ∈
[

1
1−δ0

(R− P ), 1
1−δ

(R− P )
]
,

G̃N ∩ ĜN(K) is non-empty and for any game ΓN ∈ G̃N ∩ ĜN(K) any pair of strategies (σ, σ),

with σ ∈ ΣN , constitutes an equilibrium in ΓN .

Proof. See the appendix.

Proposition 2 gives sufficient, not necessary, conditions for the survival of cooperation in

games with intermediate actions. Other classes of games where cooperation survives exist.

For example, if there is a big “gap” in the payoffs somewhere along the main diagonal of the

game, the conflict escalation naturally stops at that gap, provided that the discount factor

is sufficiently large.

Figure 1 illustrates Propositions 1 and 2 as applied to the base game Γ from the intro-

duction. The shaded area in the left panel gives the values of (N, δ) used in the construction

of Proposition 1, see equation (5) in the appendix, and for which there are provably games

ΓN that admit no equilibria in Markovian strategies with limited punishment. The upper

boundary of the shaded area approaches δ = 1 as N → ∞. The shaded area in the right

panel corresponds to the statement of Proposition 2 and gives those values of (K, δ) for

which, for any N ≥ 2 any game ΓN provably admits an equilibrium in Markovian strategies

with limited punishment.

As has been noted earlier, Propositions 1 and 2 give sufficient but not necessary con-

ditions regarding the non-existence or existence of games with sustainable cooperation. In

other words, the propositions do not give tight bounds on the corresponding regions in

(N,K, δ). However, for a specific base game, we can compute those bounds numerically in

a straightforward fashion. Let

EN(δ) =

{
ΓN ∈ GN : u(a+ 1, a) +

δ

1− δ
u(a+ 1, a+ 1) >

1

1− δ
u(a, a) ∀ a : 1 ≤ a < N

}
be a set of games ΓN with profitable one-stage deviations along the main diagonal. For all

K such that G̃N(K) is not empty we define

δ̂(N,K) = sup
{
δ : G̃N(K) ∩ EN(δ) ̸= ∅

}
.

Then for any δ < δ̂ there exist games ΓN ∈ G̃N(K) ⊆ GN that do not have equilibria in ΣN .

And conversely, for any δ > δ̂ any game ΓN ∈ G̃N(K) admits an equilibrium in ΣN (albeit,

there might be just a single place along the main diagonal where escalation is prevented).
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Figure 1: Maximum δ Where Cooperation Can Break Down
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We use S = 0, P = 3, R = 7, T = 11. The shaded area in the left panel shows the values of

(N, δ) used in the proof of Proposition 1. The shaded area in the right panel shows the values of

(K, δ), where Proposition 2 is applicable. The solid, dotted, and dashed lines show δ̂(N,K), i.e.

the maximum discount factor for which games can be constructed where cooperation breaks down.

For a given (N,K, δ), sets GN , G̃N(K) and EN(δ) are all defined by linear inequalities.

Therefore a simplex method3 can be used to efficiently check whether G̃N(K) ∩ EN(δ) ̸= ∅.
Given that I(G̃N(K) ∩ EN(δ) ̸= ∅) is clearly monotone in δ, we determine δ̂ using the

bisection method, starting with the endpoints δ = 0 and δ = 1.

Figure 1 shows δ̂(N,K) as a function of N for various K as well as a function of K for

various N . In the left panel, the shaded area lies below δ̂(N,∞). That is, our numerical

analysis shows that the set of values (N, δ) for which there are games where cooperation

breaks down is strictly larger than the set we consider in the proof of Proposition 1. That is,

Proposition 1 gives sufficient but not necessary conditions. An analogous reasoning applies

to Proposition 2 as the shaded area in the right panel lies strictly above δ̂(N,K) for any N ,

i.e. there are values of discount factor lower than the ones considered in the proposition, for

which cooperation can be sustained in all games with intermediate actions.

We do not focus on the precise mechanics of escalation when the players find themselves

in a cooperative outcome that cannot be supported as an equilibrium, i.e. if no equilibrium

exists in strategies from the class ΣN . It is conceivable that similarly to institutional re-

3For computing Figure 1 we use the simplex method from NumPy, which in turn uses HiGHS (Huangfu

and Hall, 2018).
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strictions on large punishments there might be institutional restrictions on large deviations.

In such cases the conflict would escalate in a sequence of small deviations and gradually

approach the most non-cooperative outcome.

3 Discussion

Our result is robust to the assumption that punishment must be exactly symmetric. Any

moderate degree of asymmetry, in a sense that a deviation to action a can be punished by at

most action a+k, where k is a fixed number, still leads to the same conclusion, but possibly

requires a higher N . It is critical, however, that the loss in the payoff from the strongest

feasible punishment is not too high. This can be guaranteed by a construction algorithm

similar to the one we use in our proof as long as k does not depend on N .

We have assumed that every escalation step takes the same fixed time. If smaller devi-

ations become faster with the addition of new actions, then whether there is full escalation

or not depends on the rate of the speed increase and on the convexity of the initial payoffs,

but full escalation can emerge even in this case.

Our finding contrasts to that in Schelling (1980), who argued that intermediate levels of

conflict and punishment make cooperation more stable. His logic was based on the idea that

small threats are more credible and therefore act a sufficient deterrence device. Our analysis

suggests that, although being credible, these small punishments might not be sufficiently

grim, which results in step-by-step escalation of conflict.

The relation between our paper and Friedman and Samuelson (1990) is of particular

interest. Friedman and Samuelson show that cooperative outcomes can be achieved in games

with continuous strategies, where small deviations are met with small punishments. We

consider similar strategy profiles but we focus on discrete rather than continuous games,

and we show that in discrete games cooperation can break down. Let us elaborate on these

seemingly contradictory conclusions.

The crucial difference between our papers lies in how we define “small punishments”. In

Friedman and Samuelson (1990), a punishment is considered “small” if it is proportional

to the gains of a deviator, while in our case a punishment is considered “small” if it is

proportional to the deviation distance in the action space. If we were to introduce Friedman

and Samuelson’s concept into our discrete games, then punishments could be strong enough
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to prevent any escalation. In particular, our Proposition 1 would not hold. Similarly, if

our concept of small punishments was introduced into Friedman and Samuelson, then full

escalation might happen for some choices of the payoff function.4 Thus, our concept of a

small, proportional punishment makes our results differ both from the results found in the

usual repeated games literature and from those by Friedman and Samuelson.

Appendix

Proof of Proposition 1. We prove the proposition as follows. First, we choose a continuous

payoff function such that any uniform discretization of this function satisfies conditions 1,

2, and 3 (consistency, monotonicity, and prisoner’s dilemma). Second, we show that for any

δ < 1 there is a discretization that is sufficiently fine so that the corresponding game does

not have an equilibrium in ΣN .

Choose L to be the smallest integer but no less than 3 such that

L >


T −R

P − S
+ 1 if

T −R

R− P
≤ 1,

T −R

T − 2R + P
+ 1 otherwise.

Note that L ≥ 3. For a ∈ {1, . . . , N} and b ∈ {1, . . . , N} let

u(a, b) = f

(
a− 1

N − 1
,
b− 1

N − 1

)
, (1)

where

f(x, y) =

(T −R)(x− y)1−1/L +R− (R− P )y if x ≥ y,

(S − P )(y − x)1/L +R− (R− P )y if x < y,
(2)

is a continuous function defined on [0, 1]× [0, 1]. Note that L and f do not depend on N .

We verify conditions 1, 2, and 3 now. We have

u(1, 1) = f(0, 0) = R, u(N, 1) = f(1, 0) = T,

u(1, N) = f(0, 1) = S, u(N,N) = f(1, 1) = P.

4Our payoff function (2) is one such example. Note that it is not Lipschitz-continuous along the main

diagonal of the action space and therefore violates the conditions of Theorem 1 in Friedman and Samuelson

(1990).
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So, Condition 1 is satisfied. Next, we have

∂

∂x
f(x, y) =


L− 1

L
(T −R)(x− y)−1/L > 0 if x > y,

1

L
(P − S)(y − x)1/L−1 > 0 if x < y,

∂

∂y
f(x, y) =


−L− 1

L
(T −R)(x− y)−1/L − (R− P ) < 0 if x > y,

− 1

L
(P − S)(y − x)1/L−1 − (R− P ) < 0 if x < y.

Therefore f(x, y) is strictly increasing in x and strictly decreasing in y. Consequently, Con-

dition 2 is satisfied.

Note that
∂

∂x
f(x, x) = −(R− P ) < 0,

hence f is strictly decreasing along its main diagonal and the first part of Condition 3 is

satisfied. The second part of the condition requires that 2u(a, a) > u(a, b) + u(b, a) for any

integer a, b such that 1 ≤ a < b ≤ N . Using our definition of u and rearranging terms, we

obtain

(R− P )
b− a

N − 1
− (T −R)

(
b− a

N − 1

)1−1/L

+ (P − S)

(
b− a

N − 1

)1/L

> 0

or, equivalently,

(R− P )

(
b− a

N − 1

)1−1/L

− (T −R)

(
b− a

N − 1

)1−2/L

+ (P − S) > 0. (3)

Let

g(ϕ) = (R− P )ϕ1−1/L − (T −R)ϕ1−2/L + (P − S).

Then to show that (3) holds for any integer a, b such that 1 ≤ a < b ≤ N it suffices to show

that g(ϕ) > 0 for all ϕ ∈ [0, 1].

Given that L ≥ 3, we have that g(ϕ) is continuous and bounded on [0, 1]. Hence, we only

need to check the sign of g at its boundary and inflection points. We have g(0) = P −S > 0

and g(1) = 2R− (T + S) > 0 (convexity of the original game).

Solving g′(ϕ) = 0 we obtain that g has a unique inflection point on (0,∞) given by

ϕ0 =

(
T −R

R− P

L− 2

L− 1

)L

.

Suppose that T−R
R−P

> 1. We have required that L > T−R
T−2R+P

+1. From the first inequality

if follows that T − 2R + P > 0, and therefore the second inequality yields L−2
L−1

> R−P
T−R

.
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Consequently, ϕ0 > 1. There are thus no inflection points on [0, 1], and so g(ϕ) > 0 for all

ϕ ∈ [0, 1].

Suppose that T−R
R−P

≤ 1. Then ϕ0 < 1. Evaluating g at ϕ0 and rearranging, we get

g(ϕ0) = (P − S)− T −R

L− 1
ϕ
1−2/L
0 > (P − S)− T −R

L− 1
.

We have required that L > T−R
P−S

+ 1. It immediately follows that g(ϕ0) > 0. So, g is strictly

positive at its boundary points as well as at its unique interior inflection point. Hence,

g(ϕ) > 0 for all ϕ ∈ [0, 1]. Summarizing, we shown that the second part of Condition 3

holds.

Having payoffs u as defined in (1), we proceed to show that given any δ < 1 there exists

a sufficiently large N so that no symmetric pair of strategies from ΣN forms an equilibrium.

Consider a pair of strategies (σ, σ), with σ ∈ ΣN . A necessary condition for these

strategies to form an equilibrium is that the first player does not have an incentive to deviate

from some steady state (a, a) to (a+ 1, a), or

1

1− δ
u(a, a) ≥ u(a+ 1, a) +

δ

1− δ
u(a+ 1, a+ 1). (4)

Conversely, if this condition is not satisfied, then no such pair of strategies forms an equilib-

rium. Expanding u in (4) and rearranging terms we obtain

δ

1− δ

R− P

N − 1
≥ T −R

(N − 1)1−1/L

and therefore for

N >

(
δ

1− δ

R− P

T −R

)L

+ 1 (5)

the equilibrium does not exist. Thus, given any δ < 1 we can choose N sufficiently large so

that (4) does not hold. For such an N , no pair of strategies (σ, σ), with σ ∈ ΣN , constitutes

an equilibrium.

Proof of Proposition 2. Firstly, let us verify that G̃N ∩ ĜN(K) is non-empty. Consider

u(a, b) =


R + (T −R)

a− 1

N − 1
− (T − P )

b− 1

N − 1
if a ≥ b,

R + (P − S)
a− 1

N − 1
− (R− S)

b− 1

N − 1
if a < b.
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Function u(a, b) gives piece-wise linear payoffs which “bend” around the main diagonal. It is

straightforward to verify that consistency, monotonicity, and prisoner’s dilemma conditions

are satisfied, thus u(a, b) defines a game ΓN ∈ GN . We have

u(a, a) = R− (R− P )
a− 1

N − 1
,

therefore ΓN ∈ G̃N .

Now, consider any a, b, c, d such that a ≥ b and c ≥ d. We have

|u(a, b)− u(c, d)| =
∣∣∣∣(T −R)

a− c

N − 1
− (T − P )

b− d

N − 1

∣∣∣∣ ≤
T −R

N − 1
|a− c|+ T − P

N − 1
|b− d| ≤ 2

T − S

N − 1
max{|a− c|, |b− d|} ≤

K

N − 1
max{|a− c|, |b− d|}

whenever

K ≥ 2(T − S) =
1

1− δ0
(R− P ).

Analogous inequality holds for any a, b, c, d where a ≤ b and c ≤ d.

Now, consider any a, b, c, d such that a ≥ b and c < d. If we draw a line from (a, b) to

(c, d), this line will intersect the main diagonal at (m,m), where m = ad−bc
a+d−b−c

. Point m need

not be an integer, i.e. it need not belong to the action space of game ΓN . In this case, for

any K ≥ 1
1−δ0

(R− P ) we have

|u(a, b)− u(c, d)| ≤ |u(a, b)− u(m,m)|+ |u(m,m)− u(c, d)| ≤
K

N − 1
max(|a−m|, |b−m|) + K

N − 1
max(|m− c|, |m− d|) =

K

N − 1
max(|a− c|, |b− d|),

where the last equality holds, because the maximum norm is additive for segments of a line.

Analogous inequality holds when a < b and c ≥ d. Summarizing, ΓN ∈ ĜN(K).

Secondly, let us show that any pair of strategies (σ, σ), with σ ∈ ΣN , makes an equilibrium

in ΓN . A necessary and sufficient condition for that to be the case is that no profitable one-

stage deviations exist. Namely, for any tuple of actions (a, b), with b > a, we require

u(a, a) ≥ (1− δ)u(b, a) + δu(b, b)

14



or, equivalently,

u(a, a)− u(b, b) ≥ (1− δ)
(
u(b, a)− u(b, b)

)
. (6)

Now, as ΓN ∈ G̃N we have u(a, a) − u(b, b) = R−P
N−1

(b − a). Moreover, as ΓN ∈ ĜN we have

u(b, a)− u(b, b) ≤ K
N−1

(b− a). Thus, (6) holds if

R− P

N − 1
(b− a) ≥ (1− δ)

K

N − 1
(b− a),

which is satisfied for all K ≤ (R− P )/(1− δ).
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