
Introduction to Computational
Linguistics

Gemini Pro

October 2025
Version 0.1

1

Engineered by Andrei Dubovik.

With the sole exception of the title page and this imprint page, this entire book, includ-
ing all the diagrams and tables, has been automatically generated using a large language
model. No information from this book has been independently verified. A reader discre-
tion is advised.

This book is provided solely as an illustration of the capabilities of large language
models. This book is released with the understanding that the author of this project,
Andrei Dubovik, is not rendering technical or other professional advice. In particular, the
project’s author disclaims any liability that is incurred from the use or application of the
contents of this book.

Personal names and company names used throughout this book should be viewed as
fictitious. Any resemblance to actual persons or companies should be viewed as coinci-
dental.

Contents

1 Introduction to Computational Linguistics 3

2 Words, Regular Expressions, and Automata 16

3 Corpus Linguistics and Text Normalization 33

4 Language Modeling with N-grams 49

5 Part-of-Speech Tagging 67

6 Syntactic Parsing 81

7 Lexical and Compositional Semantics 100

8 Discourse, Coreference, and Dialogue 119

9 Machine Translation 134

10 Information Retrieval and Information Extraction 151

11 Sentiment Analysis and Opinion Mining 166

12 The Future: Large Language Models and Ethics 180

2

Chapter 1

Introduction to Computational
Linguistics

3

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 4

Linguistics

Computer
Science

Artificial
Intelligence

Computational
Linguistics

Figure 1.1: A Venn diagram illustrating computational linguistics as the intersection of
three overlapping fields: linguistics, computer science, and artificial intelligence.

Computational linguistics is the scientific study of language from a computational
perspective. At its core, the discipline is concerned with modeling human language in
all its forms—from the sounds of speech to the structure of sentences and the flow of
dialogue—using the formalisms and algorithms of computer science.

This pursuit has a dual nature. First, it is a scientific discipline. By creating compu-
tational models of linguistic phenomena, we can test the validity and predictive power of
linguistic theories, leading to a deeper, more rigorous understanding of how language itself
works. Second, it is an engineering discipline, focused on building useful technologies that
can process, understand, interpret, and generate human language.

This interplay between scientific inquiry and technological application is a defining
characteristic of the field. Theoretical insights about linguistic structure often pave the
way for new applications, while the challenges of building practical systems frequently
reveal the limitations of our current theories, driving the science forward. It asks not only
how language is structured, but also how we can build machines that process it.

Computational linguistics is not a monolithic discipline but a vibrant synthesis of three
distinct fields: linguistics, computer science, and artificial intelligence. As illustrated in
the Venn diagram in Fig. 1.1, it resides at the intersection where the scientific study
of language, the theory of computation, and the quest for intelligent behavior converge.
Each parent field provides indispensable components, and understanding their unique
contributions is key to grasping the nature of our subject.

From linguistics, the field inherits its core object of study and theoretical grounding.
Linguistics provides the formal models for describing language structure, from the small-
est sounds (phonology) and word forms (morphology) to sentence structure (syntax) and
meaning (semantics and pragmatics). It frames the fundamental questions: What consti-
tutes a grammatical sentence? How do words acquire meaning from context? How do we
resolve ambiguity? Without the descriptive and theoretical frameworks developed over
centuries of linguistic study, our computational efforts would be unguided, lacking a deep
understanding of the phenomena we seek to model.

Computer science provides the ‘computational’ in the field’s name, contributing the
algorithms, data structures, and engineering principles necessary to make linguistic theo-

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 5

ries operational. It is the discipline that allows us to process language at a massive scale.
Formal language theory, which we will encounter in Chapter 2, provides the mathematical
foundation for modeling language structures, while efficient algorithms for tasks like pars-
ing and searching enable the creation of practical applications. Computer science provides
the rigor and scalability to transform abstract linguistic models into working systems that
can handle the complexity and sheer volume of real-world text and speech.

Finally, artificial intelligence (AI) provides the overarching ambition and many of the
most powerful modern techniques. The goal of building machines that can understand
and generate language is a quintessential AI problem, often seen as a hallmark of true
intelligence. Historically, computational linguistics has been considered a core subfield
of AI. In the contemporary era, this link is stronger than ever, as AI’s machine learning
paradigm—and deep learning in particular—has become the dominant approach for nearly
every language task. This synergy is what propels the field forward: linguistic insight
informs the architecture of AI models, which are then implemented and evaluated using
the powerful tools of computer science.

To appreciate the complexity that computational linguistics addresses, consider a seem-
ingly simple sentence:

I saw a man on a hill with a telescope.
For a human, understanding this sentence feels effortless. We might briefly register

a slight ambiguity, but context or common sense usually guides us to a single, intended
meaning. For a computer, however, this sentence presents a significant challenge. The
string of words is grammatically correct, yet it allows for at least two distinct interpreta-
tions based on its underlying structure:

1. There is a man on a hill, and I used a telescope to see him. In this case, the telescope
is the instrument of the action ‘saw’.

2. There is a man on a hill, and that hill also has a telescope on it. In this case, the
telescope is part of the description of the hill.

This is a classic example of structural ambiguity, also known as syntactic ambigu-
ity. The uncertainty doesn’t come from the words themselves but from how they can be
grammatically combined. The source of the confusion is the prepositional phrase with a
telescope. What does it modify? Does it attach to the verb phrase (saw...with a telescope)
or the noun phrase (a hill with a telescope)?

This ambiguity is visually represented in the two syntactic parse trees shown in Fig. 1.2.
In one tree, the phrase with a telescope attaches to the verb phrase headed by saw, mod-
ifying the act of seeing. In the other, it attaches to the noun phrase a hill, modifying
the location. Both are perfectly valid grammatical structures. A computational system,
however, has no innate understanding of the world to help it decide. It cannot know if the
speaker is an astronomer or is describing a landmark. Without a mechanism to resolve
this ambiguity, a system cannot reliably answer questions like ‘What did you use to see
the man?’ or ‘What was on the hill?’

Resolving this kind of ambiguity is a central task in computational linguistics. It re-
quires a powerful combination of disciplines. From linguistics, we borrow the formalisms
of syntax that allow us to identify and represent these different possible structures. From
computer science and artificial intelligence, we leverage algorithms to parse the sentence
and statistical models to determine which structure is more probable. For instance, a
model trained on a vast amount of text might learn that the verb ‘saw’ is far more fre-
quently modified by the instrument ‘with a telescope’ than the noun ‘hill’ is. This single,
illustrative sentence thus encapsulates the core challenge of the field: to make the implicit,
probabilistic reasoning that humans perform so easily explicit and computable.

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 6

Interpretation 1: 'saw with a telescope'

I saw a man on a hill with atelescope

S

NP

Pro

VP

VP PP

V NP

NP

Det N

PP

P NP

Det N

P NP

Det N

Interpretation 2: 'hill with a telescope'

I saw a man on a hill with atelescope

S

NP

Pro

VP

V NP

NP

Det N

PP

P NP

NP

Det N

PP

P NP

Det N

Figure 1.2: Two syntactic parse trees for the ambiguous sentence ‘I saw a man on a hill
with a telescope.’ On the left, ‘with a telescope’ modifies the verb phrase headed by
‘saw’ (instrumental reading). On the right, it modifies the noun phrase ‘a hill’ (locative
reading), visually representing structural ambiguity.

As you navigate the field, you will frequently encounter two terms: Computational
Linguistics (CL) and Natural Language Processing (NLP). While often used interchange-
ably, especially in industry, they represent a subtle but important distinction in focus,
best understood through the lens of science versus engineering.

Computational Linguistics is fundamentally a scientific discipline. Its primary goal
is to understand the nature of human language itself, using computational models as its
primary theoretical and experimental tool. A computational linguist asks questions like:
What formal mechanisms can explain how humans resolve ambiguity? Can we create a
model of syntax that aligns with psycholinguistic evidence of human sentence processing?
The ultimate aim is to gain deeper insight into language and the human mind.

Natural Language Processing, on the other hand, is an engineering discipline. It is a
subfield of artificial intelligence and computer science focused on building systems that
can perform useful tasks involving language. An NLP engineer asks questions like: What
is the most accurate and efficient algorithm for translating Spanish to Japanese? How
can we build a chatbot that reliably answers customer questions? The success of an NLP
system is measured by its performance, robustness, and utility in a real-world application.

Think of the relationship between physics and mechanical engineering. A physicist
studies the laws of motion and thermodynamics to understand the universe. An engineer
uses those laws to build a more efficient engine. The two are deeply intertwined and
mutually beneficial. In the same way, CL and NLP exist in a symbiotic relationship:

• Scientific insights from CL about the structure of language often lead to new tech-
niques and better-performing models in NLP.

• The practical challenges and empirical results from building NLP systems often
challenge existing theories and drive new research questions in CL.

In this book, we will explore both facets. We will delve into the linguistic theories and
formal models that form the scientific core of the field, while also grounding our discussion
in the practical algorithms and applications that define modern NLP.

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 7

1950 1960 1970 1980 1990 2000 2010 2020

Symbolic /
Rule-based Era

1950s - 1980s

Statistical
Revolution

Late 1980s - 2000s

Deep Learning
Era

2010s - Present

Figure 1.3: A timeline of the major eras in the history of computational linguistics, from
the early symbolic approaches to the current deep learning paradigm.

The history of computational linguistics is not one of steady, linear progress but is
better understood as a series of major paradigm shifts, each driven by new theoretical
insights and advancements in computing power. As summarized in the timeline in Fig. 1.3,
we can broadly identify three distinct eras that have shaped the field.

The journey began in the 1950s, alongside the dawn of artificial intelligence itself.
This first phase, often called the symbolic or rule-based era, was characterized by attempts
to explicitly encode linguistic knowledge. Researchers believed that by writing down a
sufficient number of grammatical rules and dictionary entries, they could enable machines
to understand and translate language. This approach dominated the field for several
decades but often struggled with the vast complexity and ambiguity inherent in human
language.

The late 1980s and 1990s witnessed the statistical revolution. This marked a profound
shift away from handcrafted rules and towards learning probabilistic patterns directly from
large digital text collections known as corpora. Finally, the 2010s ushered in the current
deep learning era, where neural networks have redefined the state of the art, enabling
unprecedented performance on a wide array of language tasks.

The early history of computational linguistics, from the 1950s through the 1980s,
was defined by a symbolic or rule-based paradigm. The guiding philosophy was one of
rationalism: human language was seen as a formal system that could be fully described
by a set of explicit rules and structures. The task, then, was for linguists to meticulously
codify this knowledge—the rules of grammar, syntax, and morphology—and for computer
scientists to implement these rules in programs. This approach envisioned the computer
not as a learner, but as a logician, mechanically applying human-created linguistic rules
to process text.

The most prominent and publicized example of this era was the Georgetown-IBM
machine translation experiment in 1954. This demonstration, designed to showcase the
potential of automated translation, successfully translated over sixty carefully selected
Russian sentences into English. The system was rudimentary by modern standards, re-
lying on a small vocabulary of 250 words and just six handcrafted grammatical rules. A
Russian word would be looked up in a bilingual dictionary, and its English equivalent

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 8

would be output, with the rules handling basic word reordering and inflectional changes.
For instance, a rule might specify how to handle a Russian noun’s case ending to produce
a correct English prepositional phrase.

The demonstration was a resounding success in the public eye, creating a wave of
optimism and securing substantial government funding for the nascent field. The press
confidently predicted that automated interpreters would be commonplace within a few
years. However, this initial success on a small, controlled problem masked a fundamental
weakness. The rule-based approach failed to scale. The number of rules required to cover
the vast complexity, ambiguity, and exceptions of a real language grew astronomically. As
more rules were added, they would often conflict, leading to a cascade of errors. This ‘com-
binatorial explosion’ proved that hand-crafting a comprehensive grammar for a language
was an intractable task, setting the stage for a major paradigm shift.

By the late 1980s, the limitations of purely symbolic, rule-based systems were becom-
ing clear. Hand-crafting comprehensive grammars and lexicons proved to be a monumen-
tal task; for every rule a linguist could devise, real-world language presented countless
exceptions. These systems were notoriously brittle: an unfamiliar word or a slightly un-
conventional grammatical construction could cause them to fail completely. Furthermore,
they were difficult to scale or adapt to new domains, as each new application required
another intensive, manual effort of rule creation.

This led to a major paradigm shift, often called the statistical revolution. The central
idea was to move away from hand-crafted rules and towards models that learn patterns
automatically from data. Instead of relying on a linguist’s intuition, the field embraced
probability theory and machine learning. The fundamental question changed from ‘Is this
sentence grammatically correct according to my rules?’ to ‘What is the most probable
interpretation of this sentence given the evidence we have seen?’

This new empirical approach was fueled by two parallel developments: the exponential
growth in computing power, which made it feasible to process huge datasets, and the in-
creasing availability of large-scale digital text collections, known as corpora. Researchers
could now train statistical models on millions or even billions of words of authentic text,
allowing the models to learn the likelihood of different linguistic phenomena. Tasks were
reframed as problems of statistical inference. For example, machine translation was no
longer about applying transfer rules, but about finding the target sentence T that max-
imizes the probability P (T |S) given a source sentence S. Using Bayes’ theorem, this can
be expressed as finding the T that maximizes the product of two probabilities:

P (S|T)× P (T)

This elegantly separates the problem into a translation model (the probability of the
source given the target) and a language model (the a priori probability of the target
sentence). This probabilistic mindset, pioneered in speech recognition and machine trans-
lation, made systems more robust and adaptable, laying the essential groundwork for the
data-driven methods that define computational linguistics today.

Beginning in the early 2010s, the field underwent its most dramatic transformation
to date, ushering in the current era of deep learning. This paradigm shift was fueled
by the convergence of three key factors: the availability of massive datasets, significant
advancements in parallel computing hardware like Graphics Processing Units (GPUs), and
breakthroughs in neural network architectures. Unlike the statistical methods that relied
on carefully engineered features and explicit probabilistic models, deep learning models
learn relevant features automatically from raw data through a hierarchy of interconnected
layers of ‘neurons.’

The first major success of this era was the development of dense word representa-
tions, known as word embeddings. Models like Word2Vec and GloVe learned to map

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 9

words to low-dimensional vectors, where semantically similar words were located close
to each other in the vector space. This was a revolutionary departure from the sparse,
high-dimensional vectors of the previous era. It allowed models to capture nuanced seman-
tic relationships—for instance, learning a vector relationship such that vector(‘king’) −
vector(‘man’) + vector(‘woman’) ≈ vector(‘queen’). This ability to represent meaning
numerically became a cornerstone of modern NLP.

Following this, architectures specifically designed for sequential data, such as Recurrent
Neural Networks (RNNs) and their more robust variants like Long Short-Term Memory
(LSTM) networks, became dominant. These models process text one word at a time, main-
taining an internal state or ‘memory’ that allows them to capture sequential dependencies,
making them highly effective for tasks like language modeling and machine translation.

However, the most significant breakthrough of the deep learning era has been the
Transformer architecture, introduced in 2017. Its core innovation, the self-attention mech-
anism, allows a model to weigh the influence of all words in an input sentence when pro-
cessing any single word. This enables it to capture complex, long-range dependencies far
more effectively than RNNs and, crucially, allows for massive parallelization during train-
ing. This architecture is the foundation for the massive Large Language Models (LLMs),
such as BERT and GPT, that now define the state of the art. These models are pre-
trained on immense quantities of text, acquiring a broad understanding of language that
can then be fine-tuned for exceptional performance on a wide range of specific tasks. This
paradigm of pre-training and fine-tuning has largely replaced the need to train a new model
from scratch for every problem, fundamentally changing how computational linguistics is
practiced today.

At its core, computational linguistics pursues a deceptively simple ambition: to enable
computers to process human language with a facility approaching our own. This overar-
ching ambition can be distilled into two primary, complementary goals, often framed as
understanding and generation.

1. Natural Language Understanding (NLU): This is the task of analysis—of map-
ping raw language input to a structured, unambiguous representation of its meaning.
It goes far beyond simple keyword matching. True understanding requires a machine
to dissect grammatical structure (a process we will explore in Chapter 6), resolve the
meaning of words in context (Chapter 7), and infer a speaker’s underlying intent.
The goal is to interpret language, successfully navigating the kinds of ambiguities
illustrated by the ‘telescope’ sentence to arrive at a coherent meaning.

2. Natural Language Generation (NLG): This is the inverse task of synthesis.
NLG systems start with a non-linguistic, formal representation of information—such
as data from a database or a knowledge graph—and produce fluent, grammatically
correct, and stylistically appropriate human language. Applications range from au-
tomatically generating weather forecasts from meteorological data to summarizing
long documents or crafting responses for a chatbot.

These two goals are not independent but form the two halves of a complete communi-
cation cycle. A machine translation system must first understand a sentence in a source
language before it can generate its equivalent in a target language. A virtual assistant
must interpret a user’s command before it can generate a helpful response. The ultimate
aim is to create systems that can both listen and speak, read and write, thereby bridging
the gap between human communication and machine computation.

To see how the different branches of computational linguistics come together, consider
one of its most ubiquitous applications: a virtual assistant like Amazon’s Alexa or Google
Assistant. These systems appear to have a seamless, singular ability to converse, but this

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 10

Spoken CommandAutomatic Speech
Recognition (ASR)

TextNatural Language
Understanding (NLU)

Structured Meaning
Dialogue Manager (DM)

Structured DataNatural Language
Generation (NLG)

Text Text-to-Speech
(TTS)

External APIs

Spoken ResponseSpoken
Command

Automatic Speech
Recognition (ASR)

Text Natural Language
Understanding (NLU)

Structured Meaning
Dialogue Manager (DM)

Structured DataNatural Language
Generation (NLG)

Text Text-to-Speech
(TTS)

External API

Spoken
Response

Figure 1.4: A flowchart showing the processing pipeline for a spoken command given to
a virtual assistant. The process begins with Automatic Speech Recognition (ASR) con-
verting speech to text. The text is then interpreted by Natural Language Understanding
(NLU) to extract intent and entities. A Dialogue Manager (DM) uses this structured data
to decide on an action, potentially querying an external API. The result is formulated
into a sentence by the Natural Language Generation (NLG) module, and finally converted
back into audible speech by a Text-to-Speech (TTS) engine.

illusion is built upon a cascade of distinct computational tasks. This entire sequence is
visualized in the processing pipeline shown in Fig. 1.4. Let’s trace the journey of a simple
spoken command: ‘Hey assistant, what’s the weather like in Paris tomorrow?’

The first challenge is to convert the physical sound waves of your voice into digital
text. This is the domain of Automatic Speech Recognition (ASR). The assistant’s
microphone captures the utterance, and an ASR model, trained on thousands of hours of
speech data, transcribes it into the text string: ‘what’s the weather like in paris tomorrow’.
This process must be robust enough to handle a vast range of accents, speaking speeds,
and background noise. A single transcription error at this stage can cause the entire
interaction to fail.

Once the command exists as text, the system must decipher its meaning, a task known
as Natural Language Understanding (NLU). NLU’s goal is to transform the un-
structured string of words into a structured, machine-readable format. It does this by
identifying two key things:

• Intent: The user’s core goal. In this case, the intent is to GetWeatherForecast.

• Entities (or Slots): The specific pieces of information needed to fulfill the intent.
Here, the entities are Location: Paris and Date: tomorrow.

The output of the NLU component is no longer just a sequence of words, but a
structured representation like: { intent: GetWeatherForecast, location: "Paris",
date: "tomorrow" }.

This structured data is passed to the Dialogue Manager (DM), the system’s brain.
The DM maintains the state of the conversation and decides what action to take. Seeing
the GetWeatherForecast intent, it knows it must query an external service, such as a
weather API. It uses the extracted entities to populate this query, requesting the forecast
for ‘Paris’ on the relevant date. If the NLU module had failed to identify a location (e.g.,
if the user had just asked, ‘What’s the weather like tomorrow?’), the DM’s logic would
decide to ask a clarifying question: ‘For which city?’.

After the DM retrieves the information from the weather service—say, { forecast:
"sunny", high: "15°C" }—it must deliver this answer to the user. This is where Nat-
ural Language Generation (NLG) comes in. The NLG module takes the structured
data from the API and converts it into a well-formed, natural-sounding sentence, such as:
‘The weather in Paris tomorrow will be sunny, with a high of 15 degrees Celsius.’

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 11

1990 2000 2010 2020

0

10

20

30

40

50

60

Year

Tr
a
n
sl

a
ti

o
n
 Q

u
a
lit

y
 (

B
LE

U
 S

co
re

)

Rule-based

Statistical MT (SMT)

Neural MT (NMT)

Figure 1.5: The evolution of Machine Translation quality over time, measured by a met-
ric like the BLEU score. The chart highlights the significant performance improvements
following the major paradigm shifts from rule-based systems to Statistical Machine Trans-
lation (SMT) in the 1990s and the subsequent, even more dramatic, leap with the advent
of Neural Machine Translation (NMT) in the mid-2010s.

Finally, this generated text string is sent to a Text-to-Speech (TTS) or speech
synthesis engine. The TTS system converts the text back into audible speech, producing
the synthesized voice that you hear as the final response. This intricate, multi-stage
process—from speech to text, text to meaning, meaning to action, action to text, and text
back to speech—all happens in just a few seconds, perfectly illustrating how multiple sub-
fields of computational linguistics are integrated to create a single, powerful application.

Perhaps no application demonstrates the transformative power of computational lin-
guistics more vividly than automated Machine Translation (MT). The ambitious goal of
instantly translating text from a source language to a target language has been a driving
force in the field since its inception. While early systems produced translations that were
often more comical than useful, today’s platforms, like Google Translate or DeepL, have
become indispensable tools for communication, commerce, and information access on a
global scale.

The societal impact is immense. These systems empower travelers to navigate foreign
countries, enable immigrants to access essential services, and allow researchers to read
scientific papers published in other languages. They have fundamentally lowered the
barrier to cross-cultural communication, making the world’s vast repository of knowledge
and culture more accessible than ever before. For businesses, MT facilitates international
e-commerce by localizing product descriptions and customer support, opening up global
markets that were once prohibitively expensive to enter. A small online retailer can now
communicate with customers across dozens of countries, a feat unimaginable just a few
decades ago.

This revolution did not happen overnight. It is the direct result of the major paradigm
shifts in computational linguistics. As illustrated in Fig. 1.5, the quality of machine
translation, often measured by automated metrics like the BLEU score,1 has seen dra-

1BLEU (Bilingual Evaluation Understudy) is a metric for evaluating a generated sentence to a set of
high-quality reference translations. It measures the correspondence between a machine’s output and that

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 12

matic improvements that coincide with these shifts. The move from rule-based systems
to Statistical Machine Translation (SMT) in the 1990s and 2000s led to a significant leap
in performance by learning translation patterns from massive amounts of parallel text.
The subsequent adoption of Neural Machine Translation (NMT) in the mid-2010s, pow-
ered by the deep learning techniques we will explore later in this book, caused an even
more spectacular jump in quality. Modern NMT systems can produce stunningly fluent
and accurate translations, particularly for high-resource language pairs like French and
English.

The economic implications are just as significant. The global language services industry
is valued in the tens of billions of dollars, and MT is a disruptive force within it. Rather
than replacing human translators, it has created a new collaborative model where machines
produce a high-quality first draft that a human expert then refines—a process known as
post-editing. This synergy makes professional translation faster and more cost-effective,
fueling the engine of global enterprise. Machine translation stands as a testament to the
field’s ability to tackle a profoundly complex and human problem with computational
rigor, yielding a technology that has reshaped our interconnected world.

Search engines like Google or Bing represent one of the most profound and widely-used
applications of computational linguistics. At first glance, a search engine might seem like
a simple keyword-matching tool, retrieving documents that contain the exact words typed
into the search bar. The reality, however, is far more complex. Modern search engines do
not just match strings of text; they strive to understand a user’s intent and the content
of billions of web pages to deliver truly relevant results. This monumental leap from
matching to understanding is powered by core techniques from computational linguistics.

The process begins the moment a user types a query. The engine must first interpret
what the user is actually looking for. This involves several tasks. It performs spelling
correction for typos and uses knowledge of lexical semantics to perform query expansion,
recognizing that a search for ‘car repair shops’ is also related to ‘auto maintenance services.’
Furthermore, it must resolve ambiguity. A query for ‘jaguar’ could refer to the animal,
the car brand, or an operating system. By analyzing a user’s prior searches or geographic
location, the engine can disambiguate the query to infer the most likely intent.

In parallel with understanding queries, the engine must also have a deep understand-
ing of the documents it might return as results. Before a page is ever shown to a user, it
is crawled and analyzed using a pipeline of language processing techniques. The text is
tokenized, and words are normalized using stemming and lemmatization so that searches
for ‘run’ can match documents containing ‘ran’ or ‘running.’ More advanced methods
like Named Entity Recognition are used to identify and tag key entities like people, or-
ganizations, and locations, creating a rich, structured index of the web’s unstructured
content.

With an understood query and a well-structured index, the final challenge is to rank
documents by relevance. This is the central task of Information Retrieval. Instead of a
simple yes/no decision on whether a document contains a keyword, documents are assigned
a relevance score. A foundational technique for this is weighting terms by their importance,
a classic example being TF-IDF (Term Frequency–Inverse Document Frequency). The
score for a term t in a document d is a product of its frequency in that document and its
rarity across all documents:

TF − IDF (t, d) = TF (t, d)× IDF (t)

The core idea is that a term is significant if it appears frequently in a specific document
(TF) but is rare in the overall collection (IDF). This simple but powerful heuristic helps

of a human.

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 13

the engine prioritize documents where the query terms are not just present, but a central
part of the topic. By combining these computational linguistics techniques, a search engine
orchestrates a complex process of understanding, analysis, and ranking to transform a
simple query into a useful list of results in a fraction of a second.

Beyond the prominent examples of machine translation, search, and virtual assistants,
the techniques of computational linguistics power a vast ecosystem of applications. These
tools are often seamlessly integrated into the software we use daily, working behind the
scenes to structure data, understand opinions, and facilitate communication. The following
examples represent just a sample of this diverse and impactful landscape.

• Sentiment Analysis and Opinion Mining: This field focuses on automatically
identifying and categorizing opinions expressed in text. The primary goal is often to
determine the author’s attitude—positive, negative, or neutral—towards a particular
topic, product, or service. Businesses use this technology extensively to analyze
customer feedback, monitor brand perception on social media, and gauge public
response to marketing campaigns.

• Information Extraction (IE): While search engines retrieve relevant documents,
information extraction systems go a step further by pulling structured data from un-
structured text. A key subtask is Named Entity Recognition (NER), which identifies
and classifies entities like people (e.g., ‘Ada Lovelace’), organizations (‘Google’), and
locations (‘Paris’). Another is Relation Extraction, which seeks to discover the rela-
tionships between these entities, such as identifying who works for which company
from a collection of news articles.

• Text Summarization: With the overwhelming volume of online text, automatic
summarization is an invaluable tool. The objective is to produce a concise and fluent
summary of a longer document while retaining its most important information. This
technology is used to generate news headlines on aggregator sites, create abstracts
for scientific papers, and condense long reports into manageable digests for busy
executives.

• Dialogue Systems and Chatbots: While related to the virtual assistants dis-
cussed earlier, this broad category also includes more focused conversational agents.
Task-oriented chatbots guide users through specific processes like booking a flight or
providing automated customer support, freeing up human agents for more complex
issues.

These applications, along with others like grammar correction and plagiarism detec-
tion, demonstrate the broad utility of the field. Each one relies on a combination of the
core linguistic and computational concepts we will explore throughout this book. A more
detailed summary of these and other modern applications, outlining their primary goals
and providing concrete examples, is presented in Fig. 1.6.

This book is structured to guide you systematically from the foundational principles
of computational linguistics to its most advanced applications. We have designed a path
that builds knowledge incrementally, ensuring each new concept rests on a solid prior
understanding.

Our journey begins with the essential building blocks of language processing. The next
three chapters focus on the fundamentals:

• Chapter 2 introduces the formal tools for pattern matching: regular expressions
and finite automata.

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 14

Application Goal Example

Sentiment Analysis Determine the attitude (pos-
itive, negative, neutral) ex-
pressed in a text.

Classify product reviews as positive
or negative.

Named Entity Recognition (NER) Identify and classify enti-
ties like people, organiza-
tions, and locations.

Identify ‘Ada Lovelace’ (Person) and
‘Google’ (Organization) in a news
article.

Relation Extraction Discover semantic relation-
ships between identified enti-
ties.

Determine that a specific person
works for a specific company from
a text.

Text Summarization Create a concise and fluent
summary of a longer docu-
ment.

Generate headlines for news aggre-
gator sites or abstracts for scientific
papers.

Dialogue Systems Guide a user through a task-
oriented conversation.

An automated chatbot to help a cus-
tomer book a flight or check an ac-
count balance.

Figure 1.6: A summary of modern computational linguistics applications, outlining their
primary goals and providing concrete examples.

• Chapter 3 grounds us in the empirical reality of language data, covering corpus
linguistics and essential text normalization techniques.

• Chapter 4 provides our first taste of statistical modeling by teaching you how to
predict word sequences with N-gram language models.

With these core skills established, we will ascend the traditional linguistic hierarchy.
We will tackle the core analytical tasks of assigning grammatical roles with Part-of-Speech
tagging (Chapter 5), uncovering sentence structure through syntactic parsing (Chapter 6),
and finally, representing meaning with lexical and compositional semantics (Chapter 7).

From there, we expand our view beyond single sentences to the broader context of
discourse and dialogue (Chapter 8). The subsequent chapters showcase major real-world
applications where these techniques converge: Machine Translation (Chapter 9), Informa-
tion Retrieval and Extraction (Chapter 10), and Sentiment Analysis (Chapter 11). Our
exploration culminates in Chapter 12 with a look at the current state-of-the-art—Large
Language Models—and a crucial discussion of the ethical considerations that shape the
future of our field. This roadmap will equip you with a comprehensive understanding of
how we empower computers to process human language.

In this chapter, we have laid the groundwork for our study of computational linguis-
tics. We began by defining the field as the scientific endeavor to understand and model
human language using computation, highlighting its unique position at the intersection
of computer science, linguistics, and artificial intelligence. We distinguished this scien-
tific goal from the engineering applications of Natural Language Processing (NLP), while
acknowledging that the two are deeply intertwined.

Our historical overview traced the field’s evolution through three major paradigms:

• The Symbolic Era (1950s–1980s): Dominated by hand-crafted grammatical
rules and symbolic logic, exemplified by early machine translation efforts.

• The Statistical Revolution (late 1980s–2000s): A pivotal shift towards learn-
ing probabilistic models from large-scale text data, or corpora.

CHAPTER 1. INTRODUCTION TO COMPUTATIONAL LINGUISTICS 15

• The Neural Era (2010s–Present): Characterized by the remarkable success of
deep learning and large-scale neural networks.

Finally, we saw how these approaches empower a vast array of real-world applications,
from machine translation and search engines to virtual assistants and sentiment analysis.
These examples underscore the core goal of enabling computers to understand, interpret,
and generate language, a theme we will explore in technical detail throughout this book.

Chapter 2

Words, Regular Expressions, and
Automata

16

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 17

To us, human language appears fluid and intuitive. We process words and sentences
effortlessly. For a computer, however, language is merely a sequence of characters, devoid
of inherent meaning or structure. To bridge this gap and enable computational process-
ing, we cannot rely on intuition. We need precise, unambiguous methods for describing
the patterns that govern language. This is where formal mathematical models become
indispensable. They provide a rigorous framework for defining what constitutes a valid
word, phrase, or sentence in a given language.

This chapter introduces the foundational tools for this task, drawn from a field known
as formal language theory. We will begin by modeling the simplest components of language—
the patterns that make up individual words. By defining simple ‘languages’ as specific sets
of strings and designing abstract machines to recognize them, we create our first computa-
tional building blocks. This formal approach is not just a theoretical exercise; it provides
the robust and efficient foundation upon which almost all complex language processing
technologies are built.

To formally model language, we begin with the simplest yet surprisingly powerful
class of formal languages: the regular languages. In formal language theory, a ‘language’
is simply a set of strings, and a regular language is a specific type of this set—one whose
structure can be described using a constrained but effective set of rules.

Why start here? Because a vast number of word-level phenomena and simple text
patterns can be modeled effectively as regular languages. For instance, the set of all
English words ending in -ing, the structure of dates like MM-DD-YYYY, or the morphological
variants of a noun are all patterns that fall into this class. The key advantage of regular
languages is their computational elegance; they can be described by the practical tool of
regular expressions and recognized by an efficient class of abstract machines called finite
automata. This makes them both theoretically fundamental and highly practical for real-
world text processing. They represent the first, essential step on a ladder of formalisms
used to describe linguistic structure.

To formalize our study of language, we begin with three foundational concepts: the
alphabet, the string, and the language. These concepts provide the mathematical bedrock
for defining patterns and structures.

An alphabet, denoted by Σ (Sigma), is a non-empty, finite set of symbols. For
example, the binary alphabet is Σ = {0, 1}, while the alphabet for lowercase English text
is Σ = {a, b, . . . , z}.

A string (or word) is a finite sequence of symbols drawn from an alphabet. The string
book is formed from the English alphabet. The length of a string w, denoted |w|, is the
number of symbols it contains; for example, |book| = 4. A special case is the empty
string, which has zero length and is denoted by ϵ (epsilon).

Finally, a formal language is simply a set of strings over a given alphabet. Impor-
tantly, this set can be either finite or infinite. Given the alphabet Σ = {a, b}, consider the
following languages:

• A finite language: L1 = {ϵ, a, b, ab, ba}

• An infinite language: L2 = {a, aa, aaa, . . . }, the set of all strings consisting of one
or more ‘a’s.

The set of all possible strings that can be formed from an alphabet Σ is denoted Σ∗

(pronounced ‘Sigma star’). Therefore, any language L over Σ is a subset of Σ∗, which can
be formally stated as L ⊆ Σ∗.

To define interesting languages, we need formal operations for combining and repeating
strings. The most fundamental of these is concatenation, which simply joins two strings

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 18

end-to-end. If we have a string s1 = ‘compu’ and another string s2 = ‘ter’, their con-
catenation, written as s1s2, is the string computer. Concatenating any string s with the
empty string ϵ results in the original string: sϵ = ϵs = s.

While concatenation builds longer strings, we also need a mechanism for repetition.
This is provided by the Kleene star or Kleene closure. For a given language (a set of
strings) L, its Kleene closure, denoted L∗, is the set of all strings formed by concatenating
zero or more strings from L. The ‘zero’ case is important; it means the empty string ϵ is
always an element of L∗. For example, if L = {‘a’}, then L∗ = {ϵ, ‘a’, ‘aa’, ‘aaa’, . . . }.

A closely related operator is the Kleene plus or positive closure, denoted L+. This
operation is similar to the Kleene star but requires one or more concatenations of strings
from L. Therefore, L+ includes all strings in L∗ except for the empty string ϵ. These
three operations—concatenation, Kleene star, and Kleene plus—are the essential building
blocks for defining the patterns found in regular languages.

Having formally defined the concept of a regular language, we now turn to the standard
notation used to describe them: regular expressions, often abbreviated as regex. A
regular expression is a compact algebraic formula for specifying a set of strings. Think
of it as a specialized ‘pattern language,’ purpose-built for finding and manipulating text.
Every regular expression defines a regular language, and conversely, every regular language
can be described by a regular expression.

The construction of regular expressions is recursive. We start with simple, atomic ex-
pressions and combine them using a small set of powerful operators to form more complex
patterns. The most basic regular expressions are the individual characters of our alphabet
Σ. For example, the regular expression a describes the language L(a) = {‘a’}. From this
foundation, we use three fundamental operations to build more elaborate expressions:

• Concatenation: This is the default operation, specified by placing one expression
after another. The regex book is the concatenation of the expressions b, o, o, and k.
It describes the language whose only member is the string ‘book’. Formally, if R1

and R2 are regular expressions for languages L(R1) and L(R2), their concatenation
R1R2 defines the language L(R1R2) = {xy | x ∈ L(R1) and y ∈ L(R2)}. This
means any string from the first language followed by any string from the second.

• Union (Disjunction): The vertical bar |, often called a pipe, represents choice.
It functions like an ‘or’ operator, matching any of the expressions it separates. For
instance, the regex gray|grey is useful for handling spelling variations, as it matches
either the string ‘gray’ or ‘grey’. The language it defines is the set-theoretic union
of the languages of its components: L(R1|R2) = L(R1) ∪ L(R2).

• Kleene Star (Closure): The asterisk *, named after mathematician Stephen
Kleene, signifies ‘zero or more’ repetitions of the immediately preceding expression.
For example, a* matches the empty string, ‘a’, ‘aa’, ‘aaa’, and so on. The language
it defines is the set of all finite strings of ‘a’s, including the empty string ϵ. To apply
the Kleene star to a sequence of characters, we must group them with parentheses.
This distinction is crucial: ab* matches ‘a’ followed by zero or more ‘b’s (e.g., ‘a’,
‘ab’, ‘abb’), while (ab)* matches zero or more instances of the entire string ‘ab’
(e.g., ‘’, ‘ab’, ‘abab’).

To avoid ambiguity, these operators have a defined order of precedence. The Kleene
star has the highest precedence, followed by concatenation, and finally union has the low-
est. Therefore, cat|dog* is interpreted as (cat)|(dog*), not as (cat|dog)*. Parentheses
can be used to override this default order, just as in arithmetic. These three core opera-
tors, summarized for convenience in Fig. 2.1, are all that is needed to describe any regular
language.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 19

Operator Name Example

(juxtaposition) Concatenation book matches ‘book’
| Union (Disjunction) gray|grey matches ‘gray’ or ‘grey’
* Kleene Star (Closure) a* matches ϵ, ‘a’, ‘aa’, . . .

Figure 2.1: A summary of the three fundamental regular expression operators.

Let’s put the basic operators of concatenation, union, and closure into practice. Imag-
ine we are given a small block of raw text and our goal is to extract all dates and email
addresses.

Consider the following text:
The project kickoff is 03/15/2024. Please contact either jane.doe@university.edu or

the lead, smith-j@dept.org, for more details. The final deadline is set for 04-20-2024.
First, we will devise a pattern to find dates in the MM/DD/YYYY or MM-DD-YYYY format.

We can observe that a date consists of two digits, a separator, two more digits, another
separator, and finally four digits.

• Two digits can be represented by [0-9][0-9]. This is a concatenation of two char-
acter sets, each allowing any digit from 0 to 9.

• The separator is either a hyphen or a forward slash. We can represent this choice
using a character set as a form of union: [-/].

• Four digits are [0-9][0-9][0-9][0-9].

By concatenating these components, we arrive at our first regular expression for finding
dates: [0-9][0-9][-/.][0-9][0-9][-/.][0-9][0-9][0-9][0-9]

When applied to the text, this pattern would successfully match both 03/15/2024 and
04-20-2024.

Next, let’s build a pattern for email addresses. A simplified structure is a sequence of
characters for the username, an @ symbol, and a sequence of characters for the domain
name. We can use the positive closure operator, +, to mean ‘one or more’ of the preceding
character type.

• A username can contain letters, numbers, periods, and hyphens. A pattern for this
is [a-zA-Z0-9.-]+.

• This is followed by the literal @ symbol.

• The domain name is similar, often containing letters, numbers, and hyphens, followed
by a period and the top-level domain. We can model this as [a-zA-Z0-9-]+ followed
by a literal . and finally [a-zA-Z.]+.

Combining these gives us a basic expression for emails: [a-zA-Z0-9.-]+@[a-zA-Z0-9-] ⌋

+\.[a-zA-Z.]+
This pattern will match jane.doe@university.edu and smith-j@dept.org. These

examples show how a few simple operators can build powerful tools for locating structured
information within unstructured text.

While the basic operators of union, concatenation, and Kleene star provide a complete
system for defining regular languages, most modern regular expression engines offer a much
richer and more convenient syntax. These extensions don’t add theoretical power—they
can all be simulated with the basic operators—but they make writing complex patterns
significantly more concise and readable. We will now expand our toolkit to include four key

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 20

Syntax Description Example

Character Classes
[abc] Match any character from the set. [aeiou] matches ‘a’ in ‘cat’.
[ˆabc] Match any character not in the set. [ˆ0-9] matches ‘a’ in ‘a1’.
[a-z] Match any character in the range. [a-z] matches ‘c’ in ‘cat’.
\d Match any digit character. \d matches ‘5’ in ‘file_5’.
\w Match any word character (alphanumeric or _). \w matches ‘_’ in ‘a_b’.
\s Match any whitespace character. \s matches the space in ‘a b’.

Quantifiers
* Match preceding element 0 or more times. ab*c matches ‘ac’ and ‘abc’.
+ Match preceding element 1 or more times. ab+c matches ‘abc’ and ‘abbc’.
? Match preceding element 0 or 1 time. colou?r matches ‘color’.
{n} Match preceding element exactly n times. \d{3} matches ‘123’.
{n,m} Match preceding element from n to m times. \d{2,4} matches ‘99’ and ‘1234’.

Anchors
ˆ Anchor match to the start of the string/line. ˆcat matches ‘cat’ in ‘catdog’.
$ Anchor match to the end of the string/line. cat$ matches ‘cat’ in ‘tomcat’.
\b Match a word boundary position. \bcat\b matches ‘cat’, not in ‘caterpillar’.

Capturing Groups
(...) Group pattern and capture the matched string. (US|EU) captures ‘US’ from ‘Order: US 543’.

Figure 2.2: A summary of common extended regular expression syntax.

concepts: character classes, quantifiers, anchors, and capturing groups. A comprehensive
list of these syntactic elements is provided in Fig. 2.2.

A character class, denoted by square brackets [], allows you to match any single
character from a specified set. For instance, [aeiou] will match any lowercase vowel.
Ranges are also permitted, so [a-z] matches any lowercase letter and [0-9] matches
any digit. A ^ as the first character inside the brackets negates the class, so [^0-9]
matches any character that is not a digit. For convenience, several predefined character
classes exist, such as \d for digits ([0-9]), \w for ‘word’ characters (letters, numbers, and
underscore), and \s for whitespace characters (spaces, tabs, newlines).

Quantifiers control how many times a preceding part of an expression can occur. The
three most common are:

• The asterisk * matches the preceding item zero or more times. ab*c matches ac,
abc, abbc, etc.

• The plus + matches one or more times. ab+c matches abc and abbc, but not ac.

• The question mark ? matches zero or one time, making the preceding item optional.
The pattern colou?r matches both ‘color’ and ‘colour’. For more precise control,
braces can specify a range of repetitions. For example, \d{3} matches exactly three
digits, while \d{2,4} matches between two and four digits.

Anchors are special characters that don’t match any character in the string but
instead match a position. The caret ^ anchors the match to the beginning of a line or
string, while the dollar sign $ anchors it to the end. The pattern ^cat$ will only match the
exact string ‘cat’ and nothing else. Another crucial anchor in computational linguistics
is \b, which matches a word boundary. This is the zero-width position between a word
character (\w) and a non-word character (\W). Using \bcat\b ensures you match the word
‘cat’ but not the ‘cat’ in ‘caterpillar’.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 21

Finally, capturing groups, created with parentheses (), serve two purposes. First,
they group part of a pattern so that operators like * or + apply to the whole group, as in
(ab)+, which matches ab, abab, and so on. Second, and more importantly, they capture
the portion of the string that matched the enclosed pattern. This allows you to extract
specific pieces of information from a larger text. For example, in the string ‘Order: US
543’, the pattern (US|EU) (\d+) would not only match ‘US 543’ but also allow you to
separately extract the captured groups ‘US’ and ‘543’.

By combining these elements, we can build powerful and precise patterns. Consider a
pattern for matching simple email addresses: ([\w.-]+)@([\w.-]+)\.([a-zA-Z]{2,}).
This expression uses character classes, quantifiers, and capturing groups to identify and ex-
tract the username, domain name, and top-level domain from a string. With this expanded
syntax, regular expressions become an indispensable tool for information extraction, as
we will see in the following case study.

With our expanded toolkit of advanced operators, regular expressions become more
than just a tool for finding patterns; they are a mechanism for simple Information Ex-
traction (IE). The goal of IE is to identify and pull structured data, like names, dates, or
relationships, from unstructured text. While complex IE requires more powerful machine
learning models, regular expressions are highly effective for tasks where the input data
has a consistent, predictable format.

Let’s consider a practical case study: extracting author and title information from a
bibliography file. Imagine our file contains entries formatted in a consistent style, such as:

Chomsky, N. (1957). *Syntactic Structures*. Mouton.
Our goal is to write a single regular expression that can read a line like this and extract

‘Chomsky, N.’ as the author and ‘Syntactic Structures’ as the title. We can achieve this
by designing a pattern that matches the entire line while using capturing groups (...) to
isolate the specific pieces of information we want.

Consider the following regular expression:
^([\w\s,.-]+)\s\(\d{4}\)\.\s*([^*]+)*.*$
Let’s break this down:

• ^ asserts our pattern must start at the beginning of the line.

• ([\w\s,.-]+) is our first capturing group for the author. It matches one or more
characters that are either a word character (\w), whitespace (\s), a comma, a period,
or a hyphen.

• \s\(\d{4}\)\.\s matches the non-captured parts in between: a space, the paren-
thesized four-digit year, a period, and another space.

• *([^*]+)* is our second capturing group. It first matches a literal asterisk (*).
The group itself, ([^*]+), is a crucial trick: it matches one or more characters that
are not a closing asterisk. This non-greedy approach ensures we only capture the
text of the title. It concludes by matching the final literal asterisk.

• .*$ matches the rest of the line until the end.

When this expression is applied to each line of a bibliography, a program can directly
access the content of the capturing groups for every successful match. The text matched
by the first group is the author, and the text from the second is the title. As Fig. 2.3
demonstrates, this technique effectively transforms a simple text file into a list of structured
records. This approach is powerful but brittle; it relies on the strict consistency of the
input format. A missing year or a title not enclosed in asterisks would cause the pattern
to fail. Nonetheless, for well-formatted data, regular expressions provide a direct and
efficient method for rudimentary information extraction.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 22

Input String Extracted Data

Chomsky, N. (1957). *Syntactic
Structures*. Mouton.

Author: Chomsky, N.
Title: Syntactic Structures

Bird, S., Klein, E., and Loper, E.
(2009). *Natural Language Processing
with Python*. O’Reilly Media.

Author: Bird, S., Klein, E., and Loper, E.
Title: Natural Language Processing with Python

Manning, C. D., Schutze, H. (1999).
*Foundations of Statistical Natural
Language Processing*. MIT Press.

Author: Manning, C. D., Schutze, H.
Title: Foundations of Statistical Natural Language Processing

Figure 2.3: Using a regular expression with capturing groups to extract structured data
(author, title) from formatted bibliography entries.

While regular expressions provide a compact notation for describing patterns in text,
they don’t specify how a computer should perform the matching. For that, we turn to a
more formal computational model. The abstract machine that recognizes the languages
described by regular expressions is known as a finite-state automaton, often abbreviated
as FSA or simply a finite automaton.

An FSA is an idealized computational device, one of the simplest models of computa-
tion. The core idea is that the machine can only be in one of a finite number of states at
any given time. It processes an input string one symbol at a time from left to right. As
it reads each symbol, it transitions from its current state to another state. The specific
transition is determined by the current state and the input symbol being read.

Formally, an FSA can be visualized as a directed graph:

• The states are represented by nodes (circles).

• The transitions are represented by labeled edges between the nodes.

• There is one special start state, where the machine begins processing.

• One or more states are designated as final states or accept states, often drawn
with a double circle.

The process of recognizing a string begins at the start state. The automaton consumes
the input string symbol by symbol, following the corresponding transition edge from state
to state. After the final symbol is read, the machine stops. If it has landed in a final
(accept) state, the string is considered accepted. If it ends in any other state, the string
is rejected. The set of all strings accepted by an FSA defines the formal language it
recognizes. The crucial insight is that finite automata recognize precisely the class of
regular languages. This means that for any regular expression, an equivalent FSA can
be built to recognize the same set of strings, and vice versa. This equivalence forms the
theoretical foundation for implementing regular expression engines.

While a state diagram provides an intuitive picture of a finite automaton, a formal
definition allows us to be precise. We will begin with the Deterministic Finite Au-
tomaton (DFA), a type of FSA where every move is uniquely determined by the current
state and the input symbol. There is no ambiguity; from any state, a given character leads
to exactly one other state.

Formally, a DFA is a 5-tuple M = (Q,Σ, δ, q0, F) where:

1. Q is a finite set of states.

2. Σ is a finite set of input symbols, called the alphabet.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 23

q0 q1 q2 q3
i n g

other i

other

i

other

i

other

Figure 2.4: A state diagram of a simple Deterministic Finite Automaton (DFA) that
recognizes strings ending in ‘ing’, as described in the text. The states q0, q1, q2, and q3
represent having seen ‘’, ‘i’, ‘in’, and ‘ing’ respectively. q0 is the start state and q3 (double
circle) is the final (accepting) state.

3. δ is the transition function, which maps a state and an input symbol to a state. Its
signature is δ : Q×Σ → Q. This function is the ‘program’ of the machine, dictating
every possible move.

4. q0 ∈ Q is the designated start state.

5. F ⊆ Q is the set of final or accepting states.

Let’s ground this formal definition using the state diagram shown in Fig. 2.4, which
depicts a DFA that recognizes the language of all strings ending in ing.

The components of this specific automaton can be formally defined as follows:

• States (Q): The circles in the diagram represent the states. We can name them
{q0, q1, q2, q3}. Each state represents a stage in the recognition process, essentially
remembering how much of the target suffix (ing) we have just seen. For instance,
q0 is the initial state, q1 is the state after seeing an i, q2 after seeing in, and q3 after
seeing ing.

• Alphabet (Σ): This is the set of all characters the machine can process. For
simplicity, let’s assume it’s the set of all lowercase English letters, {a, b, c, . . . , z}.

• Start State (q0): In the diagram, q0 is marked as the start state by an incoming
arrow that originates from no other state. This is where processing for any input
string begins.

• Final States (F): The set of final states is {q3}. In diagrams, final states are
indicated by a double circle. If the machine’s final state after reading an entire
input string is a member of F , the string is accepted.

• Transition Function (δ): The labeled arrows represent the transition function.
For example, the arrow from q0 to q1 labeled i means that δ(q0, i) = q1. The

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 24

deterministic nature is clear: from q1, an n must lead to q2, while any other character
(like a or i) might lead back to a different, specific state. For example, if the machine
is in state q1 (it has just seen an i) and the next character is another i, the machine
would stay in state q1, since this new i could be the start of a new ing sequence.
This corresponds to a transition δ(q1, i) = q1. In contrast, if it sees a z, the sequence
is broken, so the transition might be δ(q1, z) = q0. A complete DFA specifies a
transition for every state and every symbol in the alphabet.

To understand how a DFA operates, let’s trace the execution of a machine designed
to recognize a simplified ‘sheep language.’ This machine accepts strings that match the
regular expression ba+!, such as ba!, baa!, and so on.

Let’s formally define this DFA, M , with the 5-tuple (Q,Σ, δ, q0, F):

• Q = {q0, q1, q2, q3, qdead} are the states.

• Σ = {a, b, !} is the alphabet.

• q0 is the start state.

• F = {q3} is the set of final (or accepting) states.

• δ is the transition function, defined as follows:

– δ(q0, b) → q1

– δ(q1, a) → q2

– δ(q2, a) → q2

– δ(q2, !) → q3

– Any other transition leads to qdead. For example, δ(q0, a) → qdead or δ(q1, b) →
qdead. Once in qdead, the machine stays there for any input.

The machine works by reading an input string one character at a time from left to
right, updating its current state according to the transition function δ. A string is accepted
if the machine is in a final state after reading the entire string. Otherwise, it is rejected.

Example 1: Tracing an accepted string baa!

1. The machine begins in the start state, q0.

2. It reads the first character, b. Following the transition δ(q0, b), it moves to state q1.

3. It reads the next character, a. Following δ(q1, a), it moves to state q2.

4. It reads the third character, a. Following δ(q2, a), it remains in state q2.

5. It reads the final character, !. Following δ(q2, !), it moves to state q3.

The machine has now consumed the entire string and is in state q3. Since q3 is in our
set of final states F , the string baa! is accepted.

Example 2: Tracing a rejected string ba

1. The machine starts in q0.

2. It reads b and moves to state q1.

3. It reads a and moves to state q2.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 25

The input string is now exhausted. The machine’s final state is q2. Since q2 is not
in the set of final states F , the string ba is rejected. This example shows that simply
passing through an accepting state is not enough; the machine must end in one.

Example 3: Tracing a rejected string aba!

1. The machine starts in q0.

2. It reads the first character, a. Our transition function does not have a defined path
for a from q0, except to the ‘dead’ state. So, the machine moves to qdead.

3. For every subsequent character (b, !), the machine will remain in qdead.

At the end of the string, the machine is in state qdead. Since qdead /∈ F , the string aba!
is rejected. This demonstrates the deterministic nature of the DFA: for any state and
any input symbol, there is exactly one move to make.

While deterministic finite automata provide a clear, unambiguous model of computa-
tion, they are not always the most intuitive tool for designing a language recognizer. For
any given state and input symbol, a DFA has exactly one choice. This rigidity can lead
to complex automata for relatively simple languages. To overcome this, we introduce a
more flexible model: the non-deterministic finite automaton (NFA).

Non-determinism can be thought of as the power of ‘choice’ or ‘parallel exploration.’
An NFA can have multiple possible next states for a given input symbol. Furthermore, it
can change state even without consuming any input, a feature known as an epsilon transi-
tion (ϵ-transition). These two features are the core of what makes NFAs non-deterministic.

Formally, an NFA is also a 5-tuple (Q,Σ, δ, q0, F), but its transition function, δ, is
defined differently.

• Q: a finite set of states.

• Σ: a finite input alphabet.

• q0 ∈ Q: the start state.

• F ⊆ Q: the set of final states.

• δ : Q× (Σ ∪ {ϵ}) → 2Q: the transition function.

The crucial difference lies in δ. The function takes a state and a symbol from the
alphabet (or the special symbol ϵ) and returns a set of possible next states. The notation
2Q represents the power set of Q—the set of all possible subsets of Q. If, from state qi on
input ‘a’, the machine can transition to either qj or qk, we would write δ(qi, a) = {qj , qk}.
If there is no transition from qi on input ‘a’, then δ(qi, a) = ∅ (the empty set).

How does an NFA process an input string? Since it can be in multiple states at once,
we can imagine it exploring all possible paths simultaneously. When the NFA reads an
input symbol, it follows all available transitions for that symbol from all of its current
states. The machine accepts a string if, after the entire string has been consumed, at least
one of these parallel paths ends in a final state. It’s as if the machine can magically guess
the correct path to take to an accepting state if one exists.

Consider the NFA in Fig. 2.5, which recognizes the language of the regular expression
a*b*. The automaton has a start state q0 and a final state q1. From q0, there is a loop
back to itself on the input ‘a’, allowing it to process any number of ‘a’s. The key non-
deterministic feature is an ϵ-transition from q0 to q1. This transition allows the machine
to move from the ‘a’-processing state to the ‘b’-processing state without reading any input.
Finally, state q1 has a loop back to itself on input ‘b’, allowing it to process any number
of ‘b’s.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 26

q₀ q₁
ε

a b

Figure 2.5: A Non-deterministic Finite Automaton (NFA) for the language described by
the regular expression a*b*. State q0 is the start state, and q1 is the final state. The
ϵ-transition allows the machine to move from the ‘a’-processing state to the ‘b’-processing
state without consuming input.

Let’s trace the input ‘ab’. We start in state q0. On reading ‘a’, we stay in q0. Now,
the machine is in state q0 with ‘b’ left to read. It must first decide whether to take the
ϵ-transition. In essence, we track the set of all possible current states. Before reading ‘b’,
the machine could be in q0 or, by following the ϵ-transition, it could also be in q1. From
this set of states {q0, q1}, we read ‘b’. There is no ‘b’ transition from q0, so that path
dies. There is a ‘b’ transition from q1 to itself, so that path continues. After reading ‘b’,
the machine is in the set of states {q1}. Since the input is consumed and the set of active
states contains a final state (q1), the string ‘ab’ is accepted.

The primary advantage of NFAs is that they are often far simpler and more compact
than their deterministic counterparts. Designing an NFA to recognize a language described
by a regular expression is frequently a more direct and intuitive process. This simplicity
is a significant benefit, even if the underlying model of computation seems more abstract.
As we will see, despite their apparent power of ‘guessing,’ NFAs are not more powerful
than DFAs; they recognize the exact same class of languages—the regular languages. The
next sections will prove this fundamental equivalence.

We have now introduced two formalisms: regular expressions, a compact notation for
describing string patterns, and finite automata, an abstract machine for recognizing them.
The connection between these two is not a coincidence; it is a deep and fundamental result
in computer science, formalized by Kleene’s theorem.1

Kleene’s theorem states that any language that can be described by a regular expres-
sion can be recognized by a finite automaton, and vice-versa. This establishes a perfect
equivalence in expressive power. The class of languages that can be defined by either
of these formalisms is known as the regular languages. This equivalence is a corner-
stone of formal language theory and has immense practical implications for computational
linguistics.

The theorem can be understood as a two-part statement:
1Kleene, Stephen C. (1956). ‘Representation of events in nerve nets and finite automata’. In C.

Shannon and J. McCarthy (eds.), Automata Studies. Princeton University Press.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 27

• Part 1: From Regular Expression to Automaton. For any regular expression
r, there exists an equivalent non-deterministic finite automaton (NFA) that accepts
the language L(r). This is the constructive direction that powers practical applica-
tions. It gives us a blueprint for taking a human-readable pattern and compiling it
into an executable machine.

• Part 2: From Automaton to Regular Expression. For any finite automaton
M (either deterministic or non-deterministic), there exists a regular expression r
that describes the exact same language, such that L(r) = L(M). This completes the
proof of equivalence, showing the mapping works in both directions.

This powerful connection means that we can use the concise, declarative syntax of regu-
lar expressions to specify complex patterns, while relying on the efficient, well-understood
mechanics of automata to perform the actual string processing. When a programmer
writes a regular expression, the system’s underlying engine can compile it into a highly
optimized automaton to match text. This provides a guaranteed bridge between a formal
description and its practical implementation. In the following sections, we will demystify
this process by examining the standard algorithms—Thompson’s construction and the
subset construction—that make this conversion possible.

The equivalence between regular expressions and finite automata, established by Kleene’s
theorem, is not merely a theoretical curiosity. It provides a practical pathway for imple-
mentation: we can convert a regular expression, which is easy for humans to write, into
an NFA, which is a straightforward computational model. Thompson’s construction is a
classic and elegant algorithm that accomplishes exactly this. The algorithm is recursive,
meaning it defines how to build an NFA for a complex expression by first building NFAs
for its simpler sub-expressions.

The process starts with two base cases for the simplest possible regular expressions:

• A single symbol: For a regular expression consisting of a single symbol a from
the alphabet Σ, we construct an NFA with a new start state and a new final state,
linked by a single transition labeled a.

• The empty string: For the empty string, ϵ, we construct an NFA with a new start
and final state, linked by a single ϵ-transition.

From these atomic components, we build larger NFAs using rules that directly mirror
the operators in the regular expression. Let’s assume we have already constructed NFAs
for the sub-expressions s and t, which we will call N(s) and N(t).

1. Union (s|t): To construct the NFA for the union s|t, we create a new start state
and a new final state. We then add ϵ-transitions from the new start state to the
original start states of both N(s) and N(t). We also add ϵ-transitions from the
original final states of N(s) and N(t) to our new final state. The original final
states are no longer marked as final. This construction creates a machine that can
non-deterministically choose to traverse either the path for s or the path for t.

2. Concatenation (st): For the concatenation st, the start state of N(s) becomes
the overall start state, and the final state of N(t) becomes the overall final state.
We connect the two machines by adding an ϵ-transition from the final state of N(s)
to the start state of N(t). The final state of N(s) is then unmarked. This forces the
machine to complete the path for s before beginning the path for t.

3. Kleene Star (s*): To construct the NFA for s*, we again create a new start state
and a new final state. We add an ϵ-transition from the new start state directly to the

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 28

0 1

2 3

4 5

6 7 8 9

ε

ε

a

b

ε

ε

ε ε

ε

ε

ε c

Figure 2.6: A diagram illustrating Thompson’s construction for the regular expression
(a|b)*c. The NFA is built systematically by first creating a machine for the union ‘a|b’,
then applying the Kleene star rule to create a machine for ‘(a|b)*’, and finally applying the
concatenation rule to join it with the machine for ‘c’. Each step in the construction creates
a new NFA with a single start and final state from the components of its sub-expressions,
connected by ϵ-transitions.

new final state to handle the case of zero occurrences of s. We also add ϵ-transitions
from the new start state to the start state of N(s) and from the final state of N(s)
to the new final state. Crucially, to allow for one or more repetitions, we add a
‘loop-back’ ϵ-transition from the final state of N(s) to its own start state.

The power of this method lies in its compositionality. As illustrated in Fig. 2.6,
to build an NFA for a complex expression like (a|b)*c, we simply apply these rules
recursively. We first construct the NFAs for a and b, combine them with the union rule to
get N(a|b), apply the Kleene star rule to this result to get N((a|b)*), and finally use the
concatenation rule to join it with N(c). The resulting NFA has a predictable structure—
always with a single start state and a single final state—making it a systematic and reliable
method for converting any regular expression into a functionally equivalent NFA.

While Non-deterministic Finite Automata (NFAs) offer great flexibility for design,
their operational mechanics can be inefficient to simulate directly. A computer must track
multiple possible paths simultaneously for a given input string. In contrast, Determin-
istic Finite Automata (DFAs) are computationally straightforward, as there is only one
possible path for any input. Fortunately, a fundamental algorithm known as subset con-
struction provides a systematic way to convert any NFA into an equivalent DFA that
recognizes the same language. This process is crucial because it proves that NFAs, de-
spite their non-determinism, do not possess any more computational power than DFAs
and guarantees that we can always build an efficient deterministic machine from a simpler
non-deterministic design.

The core idea behind subset construction is that each state in the new DFA corresponds
to a set of states from the original NFA. A DFA state represents the set of all possible
states the NFA could be in after processing a particular sequence of input symbols. The
algorithm works as follows:

1. Create the DFA start state: The start state of the DFA is the set containing
the NFA’s start state and any other states reachable from it via ϵ-transitions (the
ϵ-closure).

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 29

DFA State NFA State Set Resulting DFA State on Input

D S ‘a’ ‘b’

→ A {q0, q1} A B
B∗ {q2} B A

Figure 2.7: A trace of the subset construction algorithm converting a sample NFA to a
DFA. The start state is indicated by →, and final states by an asterisk (*). Each new
DFA state corresponds to a set of states from the original NFA.

2. Iteratively create new states and transitions: For each newly created DFA
state Dnew and for each symbol c in the alphabet Σ:

• Find the set of all states in the NFA that can be reached from any state in
Dnew by following a transition on symbol c.

• Compute the ϵ-closure of this resulting set. This new set of NFA states becomes
a state in our DFA.

• Add a transition in the DFA from Dnew to this new state on symbol c.

3. Repeat until convergence: Continue this process until no new DFA states are
generated.

4. Define final states: Any state in the DFA that contains at least one of the original
NFA’s final states becomes a final state in the new DFA.

This procedure can seem abstract, but it becomes clear when traced. The table in
Fig. 2.7 provides a step-by-step trace of the subset construction algorithm applied to
a sample NFA. Each row corresponds to a newly discovered DFA state, showing the set
of NFA states it represents and how its transitions are computed for each symbol in the
alphabet. By following the table, you can see how the algorithm systematically explores
all reachable combinations of NFA states, creating a finite and deterministic map of the
NFA’s behavior. The subset construction algorithm is a cornerstone result, proving the
equivalence of NFAs and DFAs and providing a practical method for turning conceptual
models into efficient implementations.

Finite-state automata are excellent tools for recognition. They provide a formal mech-
anism to answer a simple yes/no question: ‘Is this string a member of the language we
have defined?’ While this is a fundamental capability, many tasks in computational lin-
guistics require more. We often need to transform one string into another, not just accept
or reject it.

This process of mapping an input string to a corresponding output string is called
transduction. Consider the task of morphological analysis, where we might want to gen-
erate a plural noun from its singular form (e.g., mapping goose to geese) or translate a
word from one language to another. An FSA, by its nature, cannot perform this task.
To model such relationships, we extend the finite automaton to a more powerful machine:
the Finite-State Transducer (FST).

An FST is conceptually very similar to a finite automaton, with one crucial enhance-
ment: each transition is augmented with an output symbol. Where an FSA transition
from one state to another is labeled with an input symbol, an FST transition is labeled
with an input:output pair. As the FST consumes an input string by moving from state
to state, it simultaneously generates an output string by appending the output symbol
from each traversed arc. The final output is the sequence of symbols generated along a
successful path from the start state to a final state.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 30

q₀

q₁

q₂

other:other

ε:s

s:es, z:es
x:es

Figure 2.8: A state diagram of a Finite-State Transducer (FST) for English noun plural-
ization, corresponding to Fig. 2.17. The diagram shows a start state (q0) with a self-loop
for most characters (labeled ‘other:other’). From this state, a transition on no input (ϵ)
outputs an ‘s’ to form regular plurals like ‘cats’, leading to the final state q1. A separate
path handles nouns ending in ‘s’, ‘z’, or ‘x’; it transduces these characters to ‘es’ and leads
to a second final state, q2, correctly forming plurals like ‘foxes’.

Formally, an FST is like an NFA, but its transition function δ also produces output.
For an input alphabet Σ and an output alphabet Γ, the transition function maps a state
and an input symbol to a set of pairs, where each pair contains a new state and an output
string:

δ : Q× (Σ ∪ {ϵ}) → 2Q×Γ∗

This definition allows a single input to map to multiple possible outputs, or for output
to be produced even on an ϵ-input, making FSTs a flexible tool for modeling complex
string-to-string relationships. Their utility in computational linguistics is immense, es-
pecially for tasks involving morphology. They can elegantly capture rules for inflectional
morphology, such as pluralization and verb conjugation, and derivational morphology, like
adding prefixes and suffixes. We will now explore a practical case study of this application.

Let’s consider a practical application of Finite-State Transducers: modeling English
noun morphology. While FSAs can recognize valid words, FSTs can be used to transform
them, making FSTs a natural fit for tasks like inflectional morphology, which involves
changing a word’s form to reflect grammatical features like number. The formation of
noun plurals in English is a classic example that, while seemingly simple, is governed by
a set of well-defined rules.

Most nouns form their plural by simply adding an -s (e.g., cat → cats). However,
nouns ending in sounds like /s/, /z/, or /S/ (spelled with s, z, x, sh, ch) require an -es
suffix (e.g., fox → foxes). We can capture this logic elegantly in an FST, as shown in
Fig. 2.8. An FST for pluralization maps an input string (the singular noun) to an output
string (the plural form).

Consider the input word cat. The transducer would process this by following a path
where each input character is mapped to itself as output. Upon reaching a final state after
consuming the entire word, a final transition is taken that reads no input symbol (ϵ) but

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 31

outputs an s. The full transduction is thus c:c, a:a, t:t, ϵ:s, mapping the input cat to
the output cats.

Now, consider the input fox. The machine again maps f:f and o:o. However, upon
reading the final x, the machine is designed to follow a different path. Instead of a simple
x:x transition, it takes a specific transition labeled x:es. This single transition handles
the morphological rule for this class of nouns, correctly producing the output foxes.

This simple FST demonstrates the power of this formalism. It encodes multiple lin-
guistic rules into a single, efficient computational model. Different paths through the
machine correspond to different morphological processes. While a comprehensive FST for
English morphology would be far more complex, incorporating rules for words ending in
-y (fly → flies) and handling irregular forms (mouse → mice), this case study illustrates
the fundamental utility of FSTs in computational morphology.

Despite their utility for modeling word-level phenomena, regular expressions and finite
automata have a crucial limitation: their finite memory. An FSA can only remember
which of its finite set of states it is currently in. This is sufficient for recognizing local
patterns, but it proves inadequate for capturing certain long-distance dependencies found
in the syntax of many natural languages.

A classic example of a structure that regular languages cannot handle is center embed-
ding, where a phrase is placed in the middle of another phrase of the same type. Consider
the following sentences:

• The cat meowed.

• The cat the dog chased meowed.

• The cat the dog the rat bit chased meowed.

To verify the grammatical correctness of these sentences, a model must match each
noun phrase subject (‘the cat’, ‘the dog’, ‘the rat’) with its corresponding verb (‘bit’,
‘chased’, ‘meowed’). As the depth of embedding increases, the model must ‘remember’
an increasing number of subjects before it encounters their verbs. An FSA, with its fixed
number of states, cannot store an unbounded number of pending subjects.

Formally, this problem is equivalent to recognizing the language L = {anbn|n ≥ 0}.
This language consists of some number of a’s followed by the exact same number of
b’s. No finite automaton can recognize this language. To do so, it would need to count
the number of a’s, which could be infinite. This would require an infinite number of
states, contradicting the definition of an FSA. This fundamental inability to count and
store unbounded information means we require more powerful formalisms, like context-free
grammars, to model the hierarchical structure of sentences.

In this chapter, we have laid the formal and computational groundwork for processing
language at its most fundamental level: the word. We began with regular expressions, a
practical and powerful tool for describing and matching patterns in text. We then delved
into their theoretical counterpart, the finite-state automaton, exploring both determinis-
tic (DFA) and non-deterministic (NFA) variants. The essential takeaway, formalized in
Kleene’s theorem, is that these two perspectives are equivalent in their descriptive power;
anything a regular expression can describe, a finite automaton can recognize, and vice
versa.

We extended this model from simple recognition to transformation using Finite-State
Transducers (FSTs), demonstrating their utility in tasks like morphological analysis. How-
ever, the power of this machinery has clear boundaries. The finite-state model is funda-
mentally limited by its lack of memory. It cannot, for instance, recognize a language like
L = {anbn | n ≥ 0}, which requires counting the number of a’s to ensure an equal number
of b’s.

CHAPTER 2. WORDS, REGULAR EXPRESSIONS, AND AUTOMATA 32

This limitation is not merely a theoretical curiosity. It means that regular languages
cannot model many syntactic phenomena in human language, such as the nested structures
found in center-embedded clauses. To capture the hierarchical nature of sentences, we need
a more powerful class of grammars. Having mastered the tools for modeling words, we
are now prepared to move up the linguistic hierarchy. The subsequent chapters will build
upon this foundation, introducing the formalisms necessary to parse phrases, clauses, and
full sentences, and thereby unlock a deeper computational understanding of syntactic
structure.

Chapter 3

Corpus Linguistics and Text
Normalization

33

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 34

The evolution of computational linguistics is marked by a profound paradigm shift,
away from the purely theoretical and towards the empirically grounded. Early efforts
in the field often followed a rationalist tradition, where linguists and computer scientists
attempted to hand-craft intricate sets of rules to capture a language’s grammar. The goal
was to build a logical model based on linguistic theory and introspection. This approach,
however, frequently stumbled when faced with the immense complexity and variability of
real-world language. The resulting systems were often brittle, unable to handle exceptions,
idiomatic expressions, or the constant evolution of language use. They lacked the flexibility
to learn from experience.

The modern, data-driven era is built on a different philosophy. The central tenet is
simple yet powerful: to create computational models that understand human language,
we must learn its properties directly from vast quantities of it as it is actually written
and spoken. This represents a turn towards an empirical methodology, where direct ob-
servation of language data is the primary source of knowledge. Rather than starting with
abstract rules, we start with the data itself and use statistical methods and machine learn-
ing to discover the patterns, frequencies, and relationships that govern communication.
The guiding question is not ‘What should the rule be?’ but ‘What does the evidence in
the data suggest?’

This empirical foundation is made tangible through the linguistic corpus. A corpus
(Latin for ‘body’; plural corpora) serves as the bedrock for nearly all contemporary NLP.
It is not just any random collection of text, but a large, structured, and principled sample
of authentic language use, curated for analysis. The rise of the internet and the explosion
in digital text, combined with the availability of powerful computing resources, made it
possible to compile and process corpora on a scale previously unimaginable. This synergy
of data and computation is the engine behind the field’s most significant breakthroughs.
Instead of a few thousand hand-analyzed sentences, models can now learn from billions
of words, enabling them to capture subtle statistical nuances of language that would
be impossible to codify by hand. From machine translation to sentiment analysis, the
algorithms we will explore in this book all derive their power from learning from a corpus.
This chapter, therefore, is dedicated to this cornerstone of our field, exploring what a
corpus is and how we prepare its raw text for analysis.

At its core, a linguistic corpus is far more than just a large collection of text. To be
useful for computational analysis, a corpus must be a principled collection. We formally
define a corpus as a large, structured, and machine-readable collection of authentic text
or speech samples, which has been assembled according to explicit design criteria to be
representative of a specific language or language variety. Each component of this definition
is critical and distinguishes a corpus from a simple accumulation of digital text.

The requirement for the collection to be large is a direct consequence of the statistical
nature of modern computational linguistics. Language is rife with phenomena that are
relatively rare; a small sample of text might not contain enough examples of a particular
word, phrase, or grammatical construction to allow for meaningful statistical analysis or
the robust training of a machine learning model. The samples must also be authentic,
meaning they consist of naturally-occurring language produced by real speakers or writers
for a genuine communicative purpose. This is a crucial distinction from collections of
sentences invented by linguists to illustrate a specific point. We study language as it is
actually used, so we draw from real-world sources like news articles, fiction, academic
papers, and transcribed conversations.

Perhaps the most important characteristics are that a corpus is principled and struc-
tured. A principled collection is one built with a clear purpose and methodology, unlike
a random assortment of documents downloaded from the internet. The design principles
often aim for the corpus to be balanced and representative of the language variety under

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 35

study. For instance, a corpus of ‘general American English’ would not just contain news
articles, but would be carefully sampled to include a proportional mix of different genres
like fiction, conversation, and academic prose. The term structured refers to the fact that
the data is organized in a consistent, machine-readable format. At a minimum, this in-
cludes consistent character encoding and document boundaries. More advanced corpora
contain rich metadata, such as the author, publication date, and genre for each document,
which is essential for many types of analysis.

Ultimately, a corpus serves as the empirical bedrock for computational linguistics. It
is the digital laboratory where we can observe linguistic phenomena, test hypotheses, and
gather frequency data. For the data-driven models that dominate the field today, from
N-gram models to large neural networks, the corpus is the source of the training and
evaluation data that allows them to learn the patterns of human language. Without well-
designed corpora, the quantitative, evidence-based study of language at scale would be
impossible.

Not all corpora are created equal. The design, content, and structure of a corpus are
dictated by the research questions it aims to answer or the NLP application it is intended
to support. This leads to several distinct types of corpora, each with its own strengths
and typical use cases. The most common distinctions are based on the breadth of coverage
(balanced vs. specialized), the number of languages included (monolingual vs. parallel),
and the presence of linguistic metadata (raw vs. annotated).

A balanced corpus aims to be a representative snapshot of a particular language or
language variety. To achieve this balance, its creators carefully sample texts from a wide
array of genres and domains—such as news reports, fiction, academic articles, and tran-
scripts of spoken conversations. The goal is to mirror the proportions of these genres in the
wider language, preventing any single text type from dominating. This makes balanced
corpora invaluable for general linguistic inquiry or for training general-purpose language
models that are not tailored to a specific task. Classic examples include the pioneering
Brown Corpus for American English and the larger British National Corpus (BNC).

In contrast, a specialized corpus (or domain-specific corpus) deliberately focuses on a
narrow slice of language. Instead of broad coverage, it offers deep coverage of a particular
subject matter, genre, or communicative setting. For example, a corpus might consist
solely of legal contracts, biomedical research abstracts, or social media posts. This allows
a model to learn the specific vocabulary, jargon, and stylistic conventions of its domain,
which is essential for building high-performance applications like a medical information
extraction system or a financial sentiment analyzer.

Another crucial type is the parallel corpus. This is a multilingual resource that contains
the same texts in two or more languages. The key feature of a parallel corpus is alignment,
where sentences or segments in one language are explicitly linked to their translations in
the other(s). They are the cornerstone of statistical and neural machine translation,
as they provide the raw data from which a system can learn translational equivalences
between words and phrases. Prominent examples include the Europarl Corpus, which
contains proceedings from the European Parliament, and the Canadian Hansards, which
document parliamentary debates in English and French.

The aforementioned types primarily describe the content of a corpus. An orthogonal
and critically important dimension is whether a corpus is annotated. An annotated corpus
contains not just the raw text, but also explicit linguistic information added by human
experts. This annotation can vary in complexity:

• Part-of-speech (POS) tags: Each word is labeled with its grammatical category
(e.g., noun, verb).

• Syntactic annotation: Sentences are parsed into tree structures representing their

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 36

Corpus Type Description Primary Use Case Examples

Balanced Aims to be a representative
snapshot of a language by
sampling texts from a wide
array of genres and domains.

General linguistic inquiry;
training general-purpose lan-
guage models.

Brown Corpus,
British National
Corpus (BNC)

Specialized Deliberately focuses on a nar-
row subject matter or genre
to provide deep, domain-
specific coverage.

Building high-performance,
domain-specific NLP ap-
plications (e.g., medical
information extraction).

A corpus of legal
contracts, biomed-
ical research ab-
stracts, or social
media posts.

Parallel Contains the same texts in
two or more languages, with
sentences or segments explic-
itly aligned to their transla-
tions.

Training and evaluating sta-
tistical and neural machine
translation systems.

Europarl Cor-
pus, Canadian
Hansards.

Annotated Contains raw text enriched
with explicit linguistic meta-
data (e.g., POS tags, syntac-
tic trees) added by human ex-
perts.

Providing ‘ground truth’ data
for training and evaluating
supervised machine learning
models.

Penn Treebank

Figure 3.1: A concise summary of major corpus types, their primary use cases, and well-
known examples.

grammatical constituency or dependency relations. A corpus with such annotation
is often called a treebank.

• Semantic annotation: Words or phrases are tagged with information about their
meaning, such as their role in an event (semantic role labeling).

Annotated corpora are fundamental for supervised machine learning, as they provide
the ‘ground truth’ data needed to train and evaluate models for specific tasks like POS
tagging or parsing. The influential Penn Treebank is a prime example, containing detailed
POS and syntactic annotation.

These categories are not mutually exclusive; a corpus can be, for instance, an anno-
tated, specialized, parallel corpus. The choice of which type to use is one of the most
important decisions in any NLP project, as the data ultimately determines the capabili-
ties and limitations of the resulting model. Fig. 3.1 provides a concise summary of these
major corpus types, their primary use cases, and well-known examples.

To make the concept of a balanced corpus concrete, we can examine one of the most
influential early examples: the Brown University Standard Corpus of Present-Day Amer-
ican English, universally known as the Brown Corpus. Compiled in the 1960s by Henry
Kučera and W. Nelson Francis at Brown University, it was a landmark achievement in
linguistics. Its primary objective was to create a one-million-word sample of American
English text that was broadly representative of the language as it was used in a single
year, 1961. This made it the first truly balanced, computer-readable corpus of its kind,
setting a standard for decades of future work in the field.

The corpus consists of 500 text samples, or documents, each approximately 2,000 words
long. These samples were meticulously drawn from 15 distinct genre categories to ensure
a wide-ranging representation of written English. As shown in Fig. 3.2, these categories
span a diverse spectrum, including Press: Reportage, Religion, Skills and Hobbies, various
genres of Fiction, and academic prose from the Learned and Scientific categories. The

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 37

0k 40k 80k 120k 160k

Approximate Word Count

Press: Reportage 88,000

Press: Editorial 54,000

Press: Reviews 34,000

Religion 34,000

Skills & Hobbies 72,000

Popular Lore 96,000

Belles Lettres, etc. 150,000

Miscellaneous 60,000

Learned 160,000

Fiction: General 58,000

Fiction: Mystery 48,000

Fiction: Sci-Fi 12,000

Fiction: Adventure 58,000

Fiction: Romance 58,000

Humor 18,000

Figure 3.2: Composition of the Brown Corpus, showing the approximate number of words
from each of the 15 genre categories. This distribution illustrates the corpus’s design as a
balanced, representative sample of 1961 American English.

creators ensured that the number of samples from each category was proportional to
its prevalence in the publishing world at the time, providing a snapshot of the literary
landscape.

This careful stratification is the essence of a balanced corpus. The goal is not merely
to amass text, but to create a microcosm of the language as it is actually produced and
consumed. By sampling from romance fiction as well as from government documents, the
Brown Corpus allows researchers to make more generalizable claims about word frequen-
cies, syntactic structures, and lexical patterns across the language as a whole, rather than
just within a single, narrow domain. For instance, one could reliably compare the average
sentence length in journalistic writing versus scientific prose using this data.

Although a million words is considered small by today’s standards—where corpora
often contain billions of words—the methodological rigor of the Brown Corpus was revo-
lutionary. It provided the empirical data for some of the first large-scale computational
analyses of English vocabulary and grammar. Its design principles have been replicated
and adapted for creating similar corpora in many other languages, a testament to its en-
during influence. It demonstrated that a principled, data-driven approach was essential
for the scientific study of language.

Building a corpus is a more deliberate and structured process than simply downloading
a large amount of text. The goal is to create a resource that is balanced, representative,
and suitable for the research questions it is intended to answer. This construction process
generally follows a series of essential steps, as illustrated in the workflow in Fig. 3.3.

The first stage is data acquisition. The source of the text depends entirely on the
corpus’s purpose. For a corpus of contemporary news, one might use web scraping to
gather articles from various online newspapers. For a historical corpus, the process might
involve digitizing physical books and manuscripts using Optical Character Recognition
(OCR). Other sources include parliamentary records, social media feeds, or transcribed
speech. A crucial part of acquisition is sampling. Rather than collecting all available
data, which may be impractical or introduce bias, we select a representative sample. For
a balanced corpus like the Brown Corpus, this meant carefully selecting texts from 15

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 38

1. Defining Corpus Goals

2. Data Acquisition
(e.g., web scraping, OCR)

3. Data Cleaning

4. Structuring and Formatting
(e.g., XML/JSON)

5. Metadata Inclusion
(e.g., source, author, date)

Figure 3.3: A flowchart showing the key stages of corpus construction, from defining goals
and acquiring data to cleaning, formatting, and including metadata.

different genres to ensure the sample reflected the broad range of published American
English at the time.

Once the raw data is collected, it must undergo extensive data cleaning. Text from
the web is often riddled with non-linguistic noise, such as HTML tags, advertisements,
navigation menus, and JavaScript code, all of which must be stripped away. Scanned
documents may contain OCR errors that need correction. This stage is often labor-
intensive but is critical for the quality of the final corpus; the principle of ‘garbage in,
garbage out’ applies with full force.

After cleaning, the text is structured and formatted, often using standards like XML
(eXtensible Markup Language) or JSON (JavaScript Object Notation). This provides a
consistent format and, more importantly, allows for the inclusion of metadata—literally,
‘data about the data.’ Metadata provides essential contextual information for each docu-
ment. For a newspaper article, metadata might include:

• The publication source (e.g., The New York Times)

• The publication date

• The author’s name

• The article’s section (e.g., ‘Business,’ ‘Sports’)

This structured information is invaluable. It allows researchers to not only analyze the
language itself but also to investigate how language use varies across different sources, time
periods, or genres. By following these steps, a simple collection of raw text is transformed
into a powerful and scientifically valuable linguistic corpus.

Raw text, while useful, is merely a sequence of characters. For a computer to perform
sophisticated linguistic analysis, this raw data must be enriched with explicit, structured
linguistic information. The process of adding this expert-level information to a corpus is
known as annotation or markup. Annotation transforms a simple collection of texts into a
powerful, machine-readable resource that can be used to train and evaluate computational
models. It provides the ‘ground truth’ data that data-driven algorithms learn from. For

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 39

example, to build a system that automatically identifies nouns and verbs, we first need
a corpus where human experts have already labeled thousands of examples of nouns and
verbs.

The annotation process is often a meticulous and costly undertaking, typically per-
formed by trained linguists following a detailed set of instructions known as an annotation
guideline. To ensure the quality and consistency of the labels, it is common practice to
have multiple annotators label a portion of the same data independently. The level of
consensus between them is then measured using a metric called inter-annotator agree-
ment (IAA). A high IAA score indicates that the annotation guidelines are clear and the
resulting labels are reliable, which is crucial for building robust NLP systems.

Annotation can be performed at various linguistic levels, with the specific choice of
what to mark up—the annotation schema—depending on the intended use of the corpus.
Some of the most common types of annotation include:

• Part-of-Speech (POS) Tagging: This is one of the most fundamental layers of
annotation. Each word or token in the text is assigned a tag indicating its grammati-
cal category. For instance, the sentence ‘The cat sat on the mat’ might be annotated
as: The/DT cat/NN sat/VBD on/IN the/DT mat/NN ./. Here, DT stands for deter-
miner, NN for noun, VBD for past-tense verb, and IN for preposition.

• Syntactic Annotation (Parsing): This layer reveals the grammatical structure
of sentences. One popular approach is constituency parsing, which groups words
into nested phrases. The same sentence could be represented with brackets to show
its phrasal structure: (S (NP (DT The) (NN cat)) (VP (VBD sat) (PP (IN on)
(NP (DT the) (NN mat))))). This annotation shows that ‘The cat’ is a Noun
Phrase (NP) and ‘sat on the mat’ is a Verb Phrase (VP), which together form
the sentence (S).

• Semantic Annotation: This involves marking up meaning-related information.
This can range from word sense disambiguation, where a word like ‘bank’ is tagged
with its specific meaning (e.g., river bank vs. financial institution), to named entity
recognition, where mentions of people, organizations, and locations are identified.
Another crucial type is coreference resolution, which links expressions that refer to
the same entity, such as connecting ‘Dr. Evans,’ ‘she,’ and ‘the professor’ throughout
a text.

Ultimately, an annotated corpus is an embodiment of linguistic data tailored for a
specific computational task. The richness and reliability of the annotations directly de-
termine the potential and limitations of the models trained on it. This deep connection
between linguistic theory, annotation practice, and computational modeling is exemplified
by seminal projects like the Penn Treebank.

While the concept of annotation can be applied simply, such as labeling documents
for sentiment, some corpora feature incredibly rich, multi-layered annotation schemas.
Perhaps the most influential example of such a resource in the history of computational
linguistics is the Penn Treebank (PTB). Developed at the University of Pennsylvania,
the PTB project annotated a large corpus, primarily consisting of over a million words
from Wall Street Journal articles, with detailed linguistic information. Its release provided
a large, consistent, and publicly available dataset that became the standard benchmark
for developing and evaluating a generation of NLP models, particularly syntactic parsers.

The annotation in the Penn Treebank is applied in layers. The first and most fun-
damental layer is Part-of-Speech (POS) tagging. Every single word in the corpus is
assigned a grammatical tag based on a detailed tagset. The PTB tagset uses 36 distinct

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 40

S

VP

NP

PP

NP

DT JJ NN VBD IN DT NN .

The old man sat on the chair .

Figure 3.4: A Penn Treebank syntactic parse tree for the sentence ‘The old man sat on the
chair.’ The diagram shows the hierarchical constituent structure, with nodes for phrasal
categories (S, NP, VP, PP), part-of-speech tags (DT, JJ, NN, VBD, IN), and the individual
words.

POS tags and 12 other tags for punctuation and currency symbols. This level of granular-
ity is crucial for computational analysis; for instance, the tagset distinguishes between a
singular noun (NN), a plural noun (NNS), a proper noun (NNP), a base form verb (VB), a verb
in the past tense (VBD), and a verb in the present participle form (VBG). This fine-grained
information is far more useful for a computational model than simply labeling all of these
as ‘noun’ or ‘verb’.

The second and most famous layer of annotation is the syntactic treebank, from
which the project gets its name. On top of the POS tags, the sentences were parsed into
their constituent structures, creating a ‘tree’ that represents the sentence’s grammatical
organization. This type of annotation is known as a constituency parse or phrase-structure
parse. It hierarchically groups words into phrases, which are in turn grouped into larger
phrases, until the entire sentence is accounted for. Common phrasal labels include NP
(Noun Phrase), VP (Verb Phrase), PP (Prepositional Phrase), and ADJP (Adjective
Phrase), with S representing the entire sentence clause.

A visual representation of this structure for the sentence ‘The old man sat on the
chair’ is shown in Fig. 3.4. At the lowest level of the tree, each word is connected to its
POS tag (e.g., ‘man’ is a NN, ‘sat’ is a VBD). These tagged words form the terminal nodes.
Above them, the tree groups words into phrasal constituents. ‘The’, ‘old’, and ‘man’ are
grouped into a Noun Phrase (NP). Similarly, ‘on the chair’ forms a Prepositional Phrase
(PP). These phrases are then nested within larger ones; the PP is part of the Verb Phrase
(VP), ‘sat on the chair’. Finally, the initial NP and the VP combine to form the complete
sentence, labeled with the root symbol S. In the corpus files, this hierarchical structure is
typically stored using a bracketed notation, like this:

(S (NP (DT The) (JJ old) (NN man)) (VP (VBD sat) (PP (IN on) (NP (DT the)
(NN chair)))) (. .))

The influence of the Penn Treebank extends beyond these two layers. The same under-
lying text has since been enriched with further layers of annotation in subsequent projects.
For example, PropBank added a layer of semantic role labels, identifying who did what

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 41

to whom. Later, projects like OntoNotes added annotations for coreference (linking pro-
nouns like ‘he’ and ‘it’ to the entities they refer to), word senses, and named entities. This
demonstrates how a well-designed base corpus can serve as a scaffold for building even
richer linguistic resources over time. The legacy of the Penn Treebank is a testament to
the power of high-quality, deeply annotated data in driving scientific progress and enabling
the development of sophisticated language understanding technologies.

Having established the importance of corpora as the source of our language data, we
now confront a practical challenge. Raw text, as it exists in the wild, is inherently ‘noisy’
and inconsistent from a computational standpoint. To a computer, which sees text as
a simple sequence of characters, the strings run, Run, and running are entirely distinct
entities. Similarly, abbreviations like U.S.A. and USA, or words connected by punctuation
like state-of-the-art, are treated as unique items, different from their constituent parts.
This surface-level variation, while trivial for a human reader to interpret, creates significant
problems for our algorithms. If left unaddressed, it leads to a needlessly large vocabulary
and exacerbates the problem of data sparsity, where many meaningful word forms appear
too infrequently in the corpus for a statistical model to learn from them effectively.

This brings us to the indispensable process of text normalization, often referred to as
text pre-processing. Text normalization is the task of cleaning raw text and transforming
it into a more canonical, standardized format. The primary goal is to group together
different surface forms of what is essentially the same conceptual word, ensuring they
are treated consistently by downstream models. This process is best conceptualized as a
pipeline, a sequence of operations where raw text is passed from one stage to the next. In
the following sections, we will dissect the core components of this pipeline, starting with
the fundamental task of tokenization—breaking text into words—before moving on to
techniques like stemming and lemmatization for reducing words to their root forms.
These foundational steps are the bedrock upon which nearly all subsequent NLP analysis
is built.

After acquiring a raw text, the first and most fundamental step in preparing it for
analysis is tokenization. This is the process of segmenting a continuous stream of characters
into a sequence of discrete, meaningful units called tokens. For English and many other
languages, these tokens often correspond to words, numbers, and punctuation marks. To a
computer, a text file is simply a long sequence of bytes; it has no inherent understanding of
where one word ends and another begins. Tokenization imposes the first layer of linguistic
structure onto this raw data, transforming it from an undifferentiated string into a list of
items that our algorithms can count, compare, and analyze.

Consider the simple sentence: The quick brown fox jumps. A standard tokenizer
would break this string into the following list of six tokens:

['The', 'quick', 'brown', 'fox', 'jumps', '.']
Notice that the final period is treated as a separate token. This is a common and

important choice, as it separates the word ‘jumps’ from the sentence-boundary marker.
By isolating punctuation, we can analyze it as a distinct feature or choose to ignore it
later, but the decision is preserved. Without tokenization, we would be left to work with
individual characters or complex string-matching rules, making even simple tasks like
counting word occurrences unnecessarily difficult. The sequence of tokens becomes the
primary input for most subsequent NLP tasks, from part-of-speech tagging to parsing and
language modeling.

This process also allows us to introduce two foundational concepts in corpus linguistics:
tokens and types. A token is an instance of a word or symbol in the text. In the sentence,
‘The cat sat on the mat.’, there are seven tokens in total. A type, on the other hand,
is a unique word or symbol in the vocabulary. The set of types for that sentence would
be {The, cat, sat, on, the, mat, .}. If we are being case-sensitive, this set contains

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 42

seven unique types. If we ignore case, then ‘The’ and ‘the’ would be instances of the
same type, reducing our type count to six. The collection of all unique types in a corpus is
known as its vocabulary, often denoted as V. The distinction is crucial: the total number
of tokens tells us the length of the corpus, while the number of types tells us the size of
its vocabulary.

At first glance, tokenization might seem as simple as splitting a string by its whitespace
characters. This naive approach, however, quickly breaks down when faced with the
messiness of real-world text. Language is filled with ambiguities that challenge simple
rules. For instance, how should we handle a date like 03/25/2024? Is it one token or five
(03, /, 25, /, 2024)? What about a monetary value like $45.50? Or a single contraction
like ‘don’t’, which could be treated as one token (don't) or two (do, n't) to separate the
verb from the negation. As we will see next, successfully navigating these edge cases is
crucial for building a reliable NLP pipeline.

While tokenization might seem as trivial as splitting a string by its whitespace char-
acters, this simplistic approach quickly fails on real-world text. A simple programmatic
split on the sentence ‘She can’t go.’ would likely yield ['She', "can't", 'go.'], a result
that is suboptimal for most analyses. The token go. incorrectly bundles the word with its
sentence-terminating punctuation, and can’t merges two distinct morphemes: the modal
verb can and the negation particle not. A robust tokenizer must navigate a landscape of
such linguistic ambiguities.

The primary challenges revolve around punctuation and multi-word expressions. Con-
sider the following common issues:

• Contractions and Possessives: English contractions like can’t, they’re, or it’s
are a frequent hurdle. For analytical consistency, these are often split into their
constituent parts. A standard approach, used in corpora like the Penn Treebank,
is to separate the clitic. For instance, can’t becomes two tokens, ca and n't, while
it’s becomes It and 's.1 This separation preserves morphological information that
is crucial for downstream tasks like part-of-speech tagging. Similarly, sentence-final
punctuation, such as periods, question marks, and exclamation points, should almost
always be treated as separate tokens.

• Ambiguous Punctuation: The period is particularly problematic. It can signal
the end of a sentence, but it also appears within abbreviations (e.g., U.S., Dr.),
numbers (e.g., 3.14), and URLs. A naive tokenizer that splits on every period
would incorrectly break apart these meaningful units. A sophisticated tokenizer
must use contextual clues to determine if a period is a sentence boundary or an
internal character of a token.

• Hyphenation: Hyphens present another form of ambiguity. In a term like state-
of-the-art, the hyphenated phrase acts as a single adjectival unit and is best kept as
one token. However, hyphens can also be used for line-breaking (soft hyphens) or to
connect words that do not form a permanent compound, such as in a well-written
but ultimately flawed argument. The tokenizer’s behavior for hyphenated words is
often guided by a combination of pre-defined rules and lexical resources.

These examples illustrate that tokenization is not a solved problem but a series of
language-specific engineering decisions. A well-designed tokenizer must implement a cas-
cade of rules to correctly segment a text stream. The table in Fig. 3.5 provides several
examples of challenging input strings and the desired token sequences, highlighting the
nuanced logic required for this foundational step.

1The split of can’t into ca and n't may seem unusual, but it reflects a convention designed to regularize
patterns for parsing algorithms.

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 43

Input String Correct Token Sequence

She can’t go. [‘She’, ‘ca’, ‘n’t’, ‘go’, ‘.’]
It’s a state-of-the-art device. [‘It’, ‘'s’, ‘a’, ‘state-of-the-art’, ‘device’, ‘.’]
He lives in the U.S. [‘He’, ‘lives’, ‘in’, ‘the’, ‘U.S.’, ‘.’]

Figure 3.5: A table illustrating common tokenization challenges with example input strings
and their correctly tokenized sequences.

Once text has been tokenized, a common next step is to reduce the different inflectional
forms of a word to a common base. For instance, in a search application, we want a query
for ‘study computational linguistics’ to match documents containing the words ‘studies’,
‘studying’, or ‘studied’. The simplest and most computationally efficient way to achieve
this is through stemming. Stemming is a heuristic-based process for crudely chopping
off word endings—primarily suffixes—to obtain a common base form, known as a stem.

It is crucial to understand that stemming is not a formal linguistic analysis. It operates
on word strings using a pre-defined set of rules and has no knowledge of context or part of
speech. The goal is not to produce a linguistically correct root word, but rather to ensure
that a group of related words maps to the same stem. For example, the words computation,
computational, and compute might all be reduced to the stem comput. Notice that the stem
itself is not always a valid English word, which is perfectly acceptable for the purposes of
stemming. The process is a form of conflation—collapsing distinctions between different
word forms.

The heuristic nature of stemming, while fast, inevitably leads to two types of errors:

• Over-stemming: This occurs when too much of a word is removed, causing words
with different meanings to be conflated into the same stem. For example, a stemmer
might incorrectly reduce both universal and university to the stem univers, treating
them as the same concept. This is a false positive.

• Under-stemming: This is the opposite problem, where the stemmer fails to re-
duce words that are actually related to the same stem. A simple stemmer might
fail to relate data and datum, or adhesion and adhesive, because its rules are not
sophisticated enough to handle their specific morphological patterns. This is a false
negative.

Despite these limitations, stemming is a powerful and widely used technique, especially
in applications like information retrieval where speed is critical and the occasional error
has a minimal impact on overall performance. The simplicity of the approach makes it
an attractive first step in the normalization pipeline. Numerous algorithms for stemming
exist, each with its own set of rules and trade-offs between aggression and accuracy. The
most influential of these is the Porter Stemmer, which we will examine next.

One of the most influential and widely used stemming algorithms is the Porter Stem-
mer, developed by Martin Porter in 1980. It provides a simple yet effective heuristic for
removing common morphological and inflectional endings from English words. The algo-
rithm does not rely on a dictionary but instead applies a sequence of suffix-stripping rules
in a series of steps.

The Porter Stemmer operates through five distinct phases, applied in a fixed order.
Each phase consists of a set of rules, such as "if the word ends in -ational, replace it
with -ate‘. For a rule to fire, the word must not only match the suffix but the remaining
stem must also satisfy a certain length condition. This condition, known as the ’measure,"
roughly counts the number of vowel-consonant sequences in the stem. This prevents the
algorithm from being overly aggressive on short words; for instance, it stops relate from

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 44

Step Rule Applied Word Form

Initial State — normalization
Step 2 -ational → -ate normalize
Step 4 -ize → ϵ normal

Final Output — normal

Figure 3.6: Step-by-step reduction of the word ‘normalization‘ using the Porter Stemmer
algorithm.

being incorrectly reduced to rel. The key principle is that if multiple rules within a step
could apply, only one is chosen—typically the one with the longest matching suffix.

To make this concrete, let’s consider how the algorithm would process the word nor-
malization. The process, which is detailed step-by-step in Fig. 3.6, demonstrates the
sequential nature of the rules. The word is transformed iteratively as it passes through
the phases. In Step 2, the rule (-ational → -ate) reduces normalization to normalize.
In a subsequent step, the rule (-ize →) further reduces it to normal. Finally, after
passing through all five steps, the algorithm terminates, yielding the final stemmed form
normal.

It is crucial to remember that the Porter Stemmer is a heuristic. Its output is not
guaranteed to be a linguistically correct root (e.g., university becomes univers). However,
its strength lies in its speed and its ability to consistently map variants like normalize,
normalized, and normalization to the same token. This consistency is often exactly what
is needed for downstream tasks like information retrieval, where the goal is to match query
terms to documents regardless of their specific inflectional form.

While stemming provides a quick and often effective method for normalization, its
heuristic nature can be a blunt instrument, sometimes producing non-words. A more so-
phisticated and linguistically principled approach is lemmatization. The goal of lemma-
tization is to reduce a word not to a ‘stem,’ but to its lemma—the canonical or dictionary
headword form. For instance, the lemma for cars is car, the lemma for feet is foot, and
the lemma for running is run. The lemma represents the abstract concept of the word,
under which all its inflected variants (like plural nouns or conjugated verbs) are grouped.

Unlike stemming’s crude suffix-stripping rules, a lemmatizer relies on a deeper un-
derstanding of a language’s morphology. The process involves more than just algorithmic
transformation; it is a form of analysis. To correctly identify the lemma, a system typically
requires two components:

1. A dictionary (or a more complex lexical resource) containing valid words and their
corresponding lemmas.

2. Morphological analysis rules to handle inflections. For regular forms like books
→ book, this might seem simple, but the real power of lemmatization lies in its
ability to handle irregular forms that do not follow simple patterns.

Crucially, effective lemmatization often requires knowing the word’s part-of-speech
(POS) in the context of the sentence. A word’s lemma can change completely depending
on its grammatical role. Because of this dependency, lemmatization is often performed as
a step immediately following POS tagging (see Chapter 5). Consider the word saw in two
different contexts:

• In ‘I saw a bird,’ saw is a verb. A POS-aware lemmatizer would correctly identify
its lemma as the verb see.

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 45

Original Word Stemmed Form (Porter) Lemmatized Form

studies studi study
studying studi study
study studi study

better better good
mice mice mouse

Figure 3.7: A comparative table contrasting the outputs of stemming and lemmatization.
The table shows how stemming provides a crude, heuristic reduction (e.g., ‘studi’) while
lemmatization returns the correct dictionary form (e.g., ‘study’, ‘good’, ‘mouse’).

• In ‘He used a saw,’ saw is a noun. Its lemma is simply saw.

Without the part-of-speech context, a lemmatizer would be forced to guess or default
to the most common form, potentially introducing errors. This ability to disambiguate
based on context is a significant advantage over stemming, which would likely leave the
word saw unchanged in both cases.

This reliance on linguistic knowledge allows lemmatization to handle a wide range of
complex and irregular cases that are impossible for a stemmer to resolve. For example,
it correctly maps irregular verbs like went to go and was to be. It can also handle non-
standard plurals, such as geese to goose and corpora to corpus. Furthermore, it can
consolidate comparative and superlative adjectives, reducing both better and best to
the lemma good. This ability to group words based on their shared meaning, rather
than just their orthographic similarity, is invaluable for many semantic analysis tasks.
Many lemmatization algorithms, such as the one included in the popular lexical database
WordNet2, are built upon these large, hand-crafted resources that map inflected forms to
their base lemmas.

The choice between stemming and lemmatization represents a fundamental trade-off
between computational efficiency and linguistic accuracy. While both techniques aim to
reduce words to a base form, their approaches and the quality of their outputs differ
significantly. Stemming is a heuristic, rule-based process that works by crudely chopping
off word endings. Lemmatization, in contrast, uses morphological analysis and a dictionary
to return the proper base form, or lemma, of a word.

This distinction is most apparent when observing their outputs. A stemmer like the
Porter algorithm will reduce studies, studying, and study to the common stem ‘studi’—a
character sequence that is not a valid English word. A lemmatizer, on the other hand, will
correctly map all three forms to the dictionary headword ‘study’. The gap in sophistication
widens with irregular forms. Stemmers are typically unable to connect words like better
to good, or mice to mouse, as there is no simple affix-stripping rule that governs these
relationships. Lemmatization, with its reliance on a comprehensive lexicon, handles these
cases correctly. The comparative examples in Fig. 3.7 clearly illustrate these differences.

So, when should one be preferred over the other?

• Stemming is chosen when speed and performance are the primary concerns. For
applications like search engines, the goal is often just to ensure a query for ‘study-
ing’ also retrieves documents containing ‘studies’. The linguistic inelegance of the
stem ‘studi’ is irrelevant as long as it successfully collapses the variants together.
Stemming can also process unknown words that are not in a dictionary.

2WordNet is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept. It is often used for its
lemmatization capabilities.

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 46

• Lemmatization is essential for tasks requiring a deeper semantic understanding.
In machine translation, question answering, or sentiment analysis, knowing that
‘better’ relates to ‘good’ is crucial for correct interpretation. The cost of this accu-
racy is a slower process that depends on a lexicon and often requires part-of-speech
information to resolve ambiguity (e.g., to lemmatize ‘saw’ to ‘see’ or ‘saw’).

Ultimately, the decision rests on the specific needs of your NLP pipeline. If you
require a fast and simple method for collapsing word forms and can tolerate some impreci-
sion, stemming is a reasonable choice. If your application demands linguistic correctness,
lemmatization is the superior, more principled approach.

In addition to morphological normalization, two other simple yet powerful techniques
are often included in a standard pre-processing pipeline: case folding and stop word re-
moval. Case folding is the process of converting all characters in the text to a single,
uniform case—typically lowercase. This ensures that words like Book, book, and BOOK
are all treated as a single token. The primary benefit is a reduction in the size of the
vocabulary, which helps consolidate word counts and is advantageous for many statistical
models. However, this is a lossy transformation. Casing can carry important information,
such as distinguishing the proper noun US (United States) from the pronoun us, or the
name Brown from the color brown. For tasks like Named Entity Recognition, preserving
the original case is often crucial.

Stop word removal is the process of filtering out common words that are considered
to have little semantic value for a given task. These stop words are typically the most
frequent words in a language and include:

• Articles (a, an, the)

• Prepositions (in, on, of, for)

• Conjunctions (and, but, or)

• Pronouns (he, she, it)

Because these words appear in nearly all documents, they can dominate frequency-
based analyses without contributing much to the overall topic or meaning. The removal
process involves comparing tokens against a pre-compiled, language-specific list of stop
words and discarding any matches. Like case folding, this technique must be applied with
care. For sentiment analysis, removing the word not could completely invert a phrase’s
meaning. For machine translation, these function words are grammatically indispensable.
Thus, the decision to use these normalization steps depends entirely on the goals of the
downstream application.

To solidify our understanding, let’s walk through the complete normalization of a single
sentence from raw string to a final, processed list of tokens. This multi-stage pipeline,
which combines the techniques we have just discussed, is a standard prerequisite for most
language analysis tasks. The entire process is visually summarized in the flowchart shown
in Fig. 3.8.

Our starting point is the simple declarative sentence:
'The quickest foxes are jumping.'
The first step is tokenization. The raw string is segmented into a sequence of in-

dividual tokens, carefully separating punctuation from the final word. This yields the
list:

['The', 'quickest', 'foxes', 'are', 'jumping', '.']
Next, we apply case folding to standardize the text by converting all alphabetic

tokens to lowercase. This step ensures that ‘The’ and ‘the’ are not treated as two distinct
words, resulting in:

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 47

1. Original Sentence

'The quickest foxes are jumping.'

2. Tokenization

['The', 'quickest', 'foxes', 'are', 'jumping', '.']

3. Case Folding (Lowercase)

['the', 'quickest', 'foxes', 'are', 'jumping', '.']

4. Lemmatization

['the', 'quick', 'fox', 'be', 'jump', '.']

Figure 3.8: A diagram of the text normalization pipeline. The sentence ‘The quickest
foxes are jumping.’ undergoes tokenization, case folding, and lemmatization. The output
is shown at each stage, culminating in the final list of normalized tokens.

['the', 'quickest', 'foxes', 'are', 'jumping', '.']
Finally, we perform lemmatization. Each token is reduced to its morphological root,

or lemma. A morphologically-aware lemmatizer will convert the superlative adjective
‘quickest’ to ‘quick’, the plural noun ‘foxes’ to ‘fox’, and the inflected verb forms ‘are’
and ‘jumping’ to their base forms, ‘be’ and ‘jump’, respectively. The determiner and
punctuation remain unchanged. The final, normalized output is a list of standardized
tokens:

['the', 'quick', 'fox', 'be', 'jump', '.']
This sequence, stripped of its surface-level grammatical variations, is now in a canonical

form suitable for subsequent quantitative analysis, such as frequency counting or feature
extraction for a machine learning model.

Fortunately, implementing the text normalization pipeline from scratch is rarely neces-
sary. A rich ecosystem of open-source software libraries provides robust, well-tested, and
often multilingual implementations of these fundamental tasks. These tools allow practi-
tioners to focus on higher-level modeling rather than re-implementing core components.

Some of the most prominent libraries include:

• NLTK (Natural Language Toolkit): A comprehensive library that is excellent
for educational purposes. It provides a wide array of tokenizers, multiple stemmer
implementations including the Porter and Lancaster algorithms, and a lemmatizer
that leverages the WordNet lexical database.

• spaCy: Designed for production use, spaCy is known for its speed and efficiency. Its
processing pipeline handles tokenization, lemmatization, and other tasks in a highly
optimized manner, offering pre-trained models for dozens of languages.

• Scikit-learn: While primarily a machine learning library, its text feature extrac-
tion modules (e.g., CountVectorizer) seamlessly integrate normalization steps like
tokenization, lowercasing, and stop word removal into the model training workflow.

CHAPTER 3. CORPUS LINGUISTICS AND TEXT NORMALIZATION 48

• Stanza: Developed by the Stanford NLP Group, Stanza offers high-accuracy, pre-
trained models for many human languages, providing a full pipeline from tokeniza-
tion and lemmatization to more advanced syntactic analysis.

This chapter has established the two foundational pillars of empirical language pro-
cessing: the linguistic corpus and text normalization. These are not merely administrative
preliminaries; they are the indispensable first steps that enable every subsequent task we
will explore. A principled, well-constructed corpus acts as the ground truth—the source
of authentic language data from which statistical patterns and linguistic structures are
learned. However, this raw data is rarely suitable for direct computation.

The text normalization pipeline, with its crucial stages of tokenization, case folding,
lemmatization, and stop word removal, transforms chaotic, unstructured text into a clean,
consistent format. This standardization is what allows algorithms to treat ‘run,’ ‘ran,’ and
‘running’ as instances of the same underlying concept. Without this careful preparation,
the statistical models and parsers discussed in the following chapters would be confounded
by superficial variations, leading to poor performance. In short, the quality of corpus con-
struction and normalization directly determines the potential success of any downstream
NLP application, from part-of-speech tagging to machine translation.

Chapter 4

Language Modeling with N-grams

49

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 50

How can a machine tell the difference between a fluent, natural-sounding sentence and
a jumble of words? Consider the following two English sentences:

1. The students opened their books.

2. Books their opened students the.

For a human speaker, the first sentence is immediately recognizable as valid, while the
second is nonsensical. But what if the choice is more subtle?

1. The cat sat on the mat.

2. The cat sat on the sky.

Both are grammatically well-formed, yet we intuitively know that the first is far more
plausible. The core task of language modeling is to quantify this intuition by assigning
a probability to a sequence of words. A language model is a statistical tool that learns the
patterns of a language from a large body of text and can then compute the likelihood of
a given word sequence. Its fundamental goal is to calculate the probability P (W), where
W is a sequence of words (w1, w2, . . . , wn). A good language model will assign a higher
probability to sentence (1) than to (2), and a higher probability to sentence (3) than to
(4).

This ability to score text for its likelihood is one of the most essential components in
computational linguistics, powering a vast array of applications:

• Predictive Text: When your smartphone keyboard suggests the next word, it is
using a language model to predict the most probable word to follow what you have
already typed.

• Speech Recognition: A speech recognizer might be unsure whether a person said
‘recognize speech’ or ‘wreck a nice beach.’ A language model can determine that the
former phrase is far more probable in common usage, helping to disambiguate the
audio signal.

• Machine Translation: When translating a sentence, a system may generate mul-
tiple possible outputs. A language model helps select the most fluent and natural-
sounding translation.

It is crucial to understand that a language model computes probability, not grammat-
icality. The famous sentence ‘Colorless green ideas sleep furiously,’ coined by linguist
Noam Chomsky, is perfectly grammatical. However, because the sequence of words is
semantically bizarre and has likely never appeared in any text corpus, a language model
would assign it an extremely low probability. Conversely, a common but ungrammatical
utterance like ‘Gonna go to the store’ might be assigned a relatively high probability if it
appears frequently in the training data. Language models are a reflection of what is likely
based on past observation, not what is correct based on formal rules. In this chapter, we
will learn how to build our first language models using a simple yet powerful technique:
N-grams.

To formally assign a probability to a sequence of words W = (w1, w2, . . . , wn), we turn
to a fundamental tool from probability theory: the chain rule. The chain rule allows us
to decompose the joint probability of a sequence of events into a product of conditional
probabilities.

Let’s start with a simple two-word sequence, (w1, w2). The joint probability P (w1, w2)
is defined as:

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 51

P (w1, w2) = P (w1)P (w2|w1)

In plain language, the probability of seeing the word w1 followed by w2 is the proba-
bility of seeing w1 at the start of a sequence, multiplied by the probability of seeing w2

given that we have just seen w1.
We can extend this logic to a sequence of any length. For a three-word sequence, the

rule expands as follows:

P (w1, w2, w3) = P (w1)P (w2|w1)P (w3|w1, w2)

The general form for a sequence of n words is a product of these conditional probabil-
ities. The probability of the entire sequence W is given by:

P (w1, . . . , wn) = P (w1)× P (w2|w1)× P (w3|w1, w2)× · · · × P (wn|w1, . . . , wn−1)

This can be expressed more compactly using product notation:

P (w1, . . . , wn) =
n∏

k=1

P (wk|w1, . . . , wk−1)

This equation is the exact, unsimplified probability of a word sequence. For example,
the probability of the sentence ‘the cat sat’ would be calculated as P (the)×P (cat|the)×
P (sat|the, cat). While theoretically sound, this formulation presents a major practical
problem. To calculate the probability of the last word, P (wn|w1, . . . , wn−1), we would
need to estimate the probability of that word occurring given its entire history. For any
reasonably long sentence, this specific sequence of preceding words will be unique and will
almost certainly never have appeared in our training data. This makes it impossible to
reliably estimate these probabilities. To build a workable model, we will need to introduce
a simplifying assumption.

Calculating the true probability of a word given its entire history is practically impos-
sible. The conditional probability term from the chain rule, P (wi|w1, . . . , wi−1), requires
us to estimate the likelihood of a word appearing after a unique, and often very long,
sequence of preceding words. For any reasonably sized corpus, most long sequences will
have never appeared before. For example, the probability of the word exam following
the sequence The students who had been studying all night for the final computational
linguistics... would be impossible to compute directly, as this specific history is unlikely
to exist in our training data. This extreme data sparsity makes the full chain rule model
intractable.

To make the problem manageable, we introduce a crucial simplifying assumption.
The Markov assumption, named after the mathematician Andrey Markov, states that
the probability of the next word depends only on a fixed window of the k most recent
words, rather than the entire preceding sequence. We effectively assume that the distant
past is irrelevant for predicting the immediate future. While this is not strictly true for
human language—which contains long-distance dependencies—it provides a powerful and
computationally feasible approximation.

Formally, we approximate the true conditional probability as follows:

P (wi|w1, w2, . . . , wi−1) ≈ P (wi|wi−k, . . . , wi−1)

This assumption dramatically reduces the complexity of our model. Instead of needing
to see every possible sentence prefix to make a prediction, we only need to have seen the
most recent few words. Fig. 4.1 provides a visual representation of this simplification,

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 52

Full Chain Rule

w1 w2 ... wi-1

wi

P(wi | w1, w2, ..., wi-1)

Markov Assumption (Trigram)

... wi-2 wi-1

wi

P(wi | wi-2, wi-1)

Figure 4.1: A diagram contrasting the full chain rule model with a simplified trigram
model based on the Markov assumption. The left side shows the probability of a word
being dependent on all preceding words, while the right side shows the probability be-
ing dependent on only the two preceding words, illustrating a significant reduction in
complexity.

contrasting the complex web of dependencies in the full chain rule with the streamlined,
local dependencies used in a model based on the Markov assumption. This simplification
is the foundation of the N-gram model.

The size of the conditioning window, k, determines the order of the Markov model.
This leads directly to the different types of N-gram models we will explore:

• Unigram Model (k=0): We assume a word’s probability is independent of any
prior words. This is the simplest, but weakest, assumption. P (wi|w1, . . . , wi−1) ≈
P (wi)

• Bigram Model (k=1): The probability of a word depends only on the single
immediately preceding word. P (wi|w1, . . . , wi−1) ≈ P (wi|wi−1)

• Trigram Model (k=2): The probability of a word depends on the previous two
words. P (wi|w1, . . . , wi−1) ≈ P (wi|wi−2, wi−1)

By making this trade-off—sacrificing perfect linguistic representation for statistical
feasibility—we can build models that are surprisingly effective at capturing local word
patterns and predicting likely sequences.

The Markov assumption provides a practical way to approximate the chain rule of
probability. The class of models built on this simplifying assumption is known as N-gram
models, where an N-gram is simply a contiguous sequence of N words. These models form
a foundational technique in statistical language modeling. The value of ‘N’ determines the
size of the context window we consider when predicting the next word. While theoretically
N can be any positive integer, in practice we most commonly encounter N=1, 2, or 3.

The simplest case is the unigram model (N=1). This model makes the radical
assumption that each word is generated independently of all others. The probability of
a word depends only on its own frequency in the training corpus, not on any preceding
context. The approximation of the conditional probability thus becomes:

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 53

Unigrams (N=1) Bigrams (N=2) Trigrams (N=3)

The <s> The <s> <s> The
cat The cat <s> The cat
sat cat sat The cat sat
on sat on cat sat on
the on the sat on the
mat the mat on the mat
. mat . the mat .

. </s> mat . </s>

Figure 4.2: A breakdown of the sentence ‘The cat sat on the mat.’ into unigrams, bigrams,
and trigrams. The special tokens <s> and </s> are used to model the start and end of
the sentence for the bigram and trigram models.

P (wi|w1, . . . , wi−1) ≈ P (wi)

Calculating the probability of an entire sentence W = (w1, . . . , wk) under a unigram
model is therefore just the product of the individual probabilities of its words:

P (W) =
k∏

i=1

P (wi)

While this model discards all syntactic and semantic context, its simplicity makes it a
useful baseline for comparison.

A more powerful and common model is the bigram model (N=2). Here, we apply
the first-order Markov assumption: the probability of a word depends only on the single
word that immediately precedes it.

P (wi|w1, . . . , wi−1) ≈ P (wi|wi−1)

To properly handle the beginning and end of a sentence, we introduce special tokens.
We prepend a start-of-sentence token, <s>, and append an end-of-sentence token, </s>.
The probability of the first word is now conditioned on the start token, P (w1|<s>), and
the model must also predict the end token, P (</s>|wk). The full probability of the
sentence W is:

P (W) = P (w1|<s>)×
k∏

i=2

P (wi|wi−1)× P (</s>|wk)

Extending this logic, a trigram model (N=3) uses a second-order Markov assumption,
where the probability of a word is conditioned on the two preceding words.

P (wi|w1, . . . , wi−1) ≈ P (wi|wi−2, wi−1)

For trigram models, we need two start-of-sentence tokens, <s> <s>, to provide the
necessary two-word context for the first word of the sentence.

The general pattern holds for any N, but bigram and trigram models represent a sweet
spot. They capture useful local context without becoming computationally unwieldy.
The table in Fig. 4.2 provides a concrete example, breaking down a simple sentence
to illustrate how unigrams, bigrams, and trigrams are extracted. As N increases, the
model can capture longer-distance dependencies and potentially become more accurate.
However, this comes at a cost. The number of possible N-grams grows exponentially with

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 54

N, meaning we are far less likely to have seen any specific long N-gram in our training
data. This issue, known as data sparsity, is a central challenge we will address next.

Once we have defined the N-gram model, the central task becomes learning its param-
eters from data. The parameters of an N-gram model are the conditional probabilities
themselves, such as P (wi|wi−1) for a bigram model. The standard method for estimating
these probabilities from a text corpus is called Maximum Likelihood Estimation, or
MLE. The intuition behind MLE is simple yet powerful: the best estimate for a param-
eter is the one that maximizes the probability of the training corpus we observed. In
the context of N-grams, this principle simplifies to a very direct calculation: the relative
frequency. We assume that the probability of a future event is best represented by its
frequency in the past, as recorded in our corpus.

The general formula for the Maximum Likelihood Estimate of an N-gram probability
is a ratio of counts. The probability of a word wi given its preceding history of n−1 words
is the count of the full N-gram sequence divided by the count of the prefix (the history).

Let C(w1, . . . , wk) be the function that counts the number of times the sequence of
words (w1, . . . , wk) appears in the corpus. The MLE probability is then:

PMLE(wi|wi−n+1, . . . , wi−1) =
C(wi−n+1, . . . , wi−1, wi)

C(wi−n+1, . . . , wi−1)

This single equation is the foundation for training simple N-gram models. Let’s see
how it applies to our specific cases:

• Trigram Model: For a trigram model (n = 3), we estimate the probability of a
word wi given the two preceding words, wi−2 and wi−1. The MLE is the count of the
trigram C(wi−2, wi−1, wi) divided by the count of the bigram prefix C(wi−2, wi−1).
P (wi|wi−2, wi−1) =

C(wi−2,wi−1,wi)
C(wi−2,wi−1)

• Bigram Model: For a bigram model (n = 2), we estimate the probability of wi

given the single preceding word wi−1. This is calculated as the count of the word pair
C(wi−1, wi) divided by the count of the single-word prefix C(wi−1). P (wi|wi−1) =
C(wi−1,wi)
C(wi−1)

• Unigram Model: The unigram model (n = 1) is the simplest case. It does not
depend on any prior context, so the probability of a word wi is just its relative
frequency in the entire corpus. Here, the denominator is the total number of word
tokens in the corpus, which we can denote as N . P (wi) =

C(wi)
N

This process of ‘training’ an N-gram model, then, is not a complex optimization pro-
cedure but rather a straightforward task of data collection. It involves scanning a large
corpus and counting all occurrences of relevant N-grams. For instance, to build a bigram
model, we would need two main data structures: one to store the counts of all individual
words (for the denominators) and another to store the counts of all adjacent word pairs
(for the numerators). Once these counts are tabulated, calculating any specific conditional
probability is a simple matter of division. This direct, count-based approach is both com-
putationally efficient and easy to interpret, as the resulting probabilities are directly tied
to the evidence seen in the training data. The next section will walk through a concrete
example of this calculation. However, as we will soon see, this direct reliance on observed
counts leads to a significant problem when we encounter N-grams that never appeared in
our training text.

To make the process of training an N-gram model concrete, let’s walk through a de-
tailed example with a small corpus. A hands-on calculation will clarify how word counts
from a text are transformed into a probabilistic model of language.

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 55

Imagine our entire corpus consists of just three sentences. We have already pre-
processed the text by lowercasing all words and adding special start-of-sentence <s> and
end-of-sentence </s> tokens.

• <s> the cat sat on the mat </s>

• <s> the dog sat on the rug </s>

• <s> the cat sat on the cat </s>

Our goal is to build a bigram model. The core task is to compute the Maximum Like-
lihood Estimate (MLE) for every conditional probability P (wi|wi−1) that can be formed
from the vocabulary in this corpus. The formula, as a reminder, is:

P (wi|wi−1) =
C(wi−1, wi)

C(wi−1)

This requires two sets of counts: unigram counts for the denominators and bigram
counts for the numerators.

First, we calculate the unigram counts, which represent the number of times each
word appears. These counts will serve as the denominators in our probability formula.
For example, the word the appears as the first word in three bigrams—(the, cat), (the,
dog), and (the, mat) in the first sentence alone. Counting across the entire corpus, we
find:

• C(<s>) = 3

• C(the) = 6

• C(cat) = 3

• C(sat) = 3

• C(on) = 3

• C(dog) = 1

• C(mat) = 1

• C(rug) = 1

Next, we systematically count every sequence of two words to get our bigram counts.
For instance, the sequence (<s>, the) occurs at the start of all three sentences, so its
count is 3. The sequence (the, cat) occurs three times in total (once in the first sentence,
twice in the third). The first part of Fig. 4.3 shows the complete matrix of these bigram
counts derived from our corpus.

With both sets of counts, we can now calculate the MLE probabilities. Let’s compute
a few examples:

1. What is the probability of the word cat following the word the? P (cat|the) =
C(the, cat)

C(the) = 3
6 = 0.5

2. What is the probability of the word sat following the word cat? P (sat|cat) =
C(cat, sat)

C(cat) = 2
3 ≈ 0.67

3. What is the probability that a sentence starts with the word the? P (the|<s>) =
C(<s>, the)

C(<s>) = 3
3 = 1.0

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 56

Part 1: Bigram Counts C(wi−1, wi)

wi

wi−1 the cat sat on dog mat rug </s>

<s> 3 0 0 0 0 0 0 0
the 0 3 0 0 1 1 1 0
cat 0 0 2 0 0 0 0 1
sat 0 0 0 3 0 0 0 0
on 3 0 0 0 0 0 0 0
dog 0 0 1 0 0 0 0 0
mat 0 0 0 0 0 0 0 1
rug 0 0 0 0 0 0 0 1

Part 2: Bigram Probabilities P (wi|wi−1)

wi

wi−1 the cat sat on dog mat rug </s>

<s> 1.0 0 0 0 0 0 0 0
the 0 0.5 0 0 0.17 0.17 0.17 0
cat 0 0 0.67 0 0 0 0 0.33
sat 0 0 0 1.0 0 0 0 0
on 1.0 0 0 0 0 0 0 0
dog 0 0 1.0 0 0 0 0 0
mat 0 0 0 0 0 0 0 1.0
rug 0 0 0 0 0 0 0 1.0

Figure 4.3: Bigram counts (top) and corresponding Maximum Likelihood Estimation
(MLE) probabilities (bottom) for a small corpus. Each probability in the bottom ta-
ble is calculated by dividing the corresponding count in the top table by the sum of all
counts in that row (the unigram count of the conditioning word).

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 57

Following this procedure, we can fill out a complete probability matrix, as shown in
the second part of Fig. 4.3. This matrix is our trained bigram model.

We can now use this model to assign a probability to a full sentence. Let’s take a
sentence from our training corpus, <s> the dog sat on the rug </s>. Its probability
is the product of the probabilities of its constituent bigrams:

P (<s> the dog sat on the rug </s>) = P (the|<s>)×P (dog|the)×P (sat|dog)×P (on|sat)×P (the|on)×P (rug|the)×P (</s>|rug)

Plugging in the values from our calculated model:

P = 1.0× 1

6
× 1

1
× 3

3
× 3

3
× 1

6
× 1

1
=

1

36
≈ 0.0278

The model correctly assigns a non-zero probability to this seen sentence. But what
happens when we encounter a new sentence that is perfectly valid English, but contains
word sequences not present in our training corpus? Consider the sentence: <s> the cat
sat on the floor </s>.

To calculate its probability, we would need to compute, among others, the conditional
probability P (floor|the). Following our MLE procedure:

P (floor|the) =
C(the, floor)

C(the)

Because the bigram (the, floor) never appeared in our tiny corpus, its count is 0.
This means:

P (floor|the) =
0

6
= 0

The consequence is dire. Since the probability of the entire sentence is a product of
individual probabilities, a single zero-probability event makes the probability of the whole
sequence zero. The model predicts that this perfectly reasonable sentence is impossible.
This is the fundamental problem of data sparsity, and it reveals the critical flaw of the
simple Maximum Likelihood Estimation approach. In the next sections, we will explore
techniques designed specifically to solve this problem.

The Maximum Likelihood Estimation (MLE) approach is simple and intuitive, but it
harbors a significant flaw: it only works for N-grams that have appeared in the training
corpus. What happens when our model encounters a new sentence containing a perfectly
valid bigram, such as ‘sentient robots’, that simply wasn’t present in our training text? The
count for this bigram, C(sentient robots), will be zero. Consequently, the MLE calculation
will yield a probability of zero. This isn’t a minor edge case; it is a fundamental and
pervasive challenge in statistical language modeling known as data sparsity.

Human language is vast and creative. We constantly generate new, sensible phrases and
sentences. Any finite training corpus, even one containing billions of words, represents only
a minuscule fraction of all possible valid word sequences. The number of potential N-grams
explodes combinatorially as we increase our vocabulary size. For a modest vocabulary
of 20,000 words, there are 20, 0002 = 400 million possible bigrams and 20, 0003 = 8
trillion possible trigrams. The vast majority of these will not appear in any given corpus,
no matter how large. The bigram count matrix derived from our small sample corpus,
shown in Fig. 4.4, provides a stark visual illustration of this problem. The matrix is
overwhelmingly populated with zeros, each one representing a word combination that our
model was never taught.

This leads directly to the zero-probability problem. The probability of a word
sequence is calculated by multiplying the probabilities of its constituent N-grams:

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 58

the chef prepared fish tofu sentient robots

the 0 1 0 0 0 0 0
chef 0 0 1 0 0 0 0
prepared 0 0 0 1 0 0 0
fish 0 0 0 0 0 0 0
tofu 0 0 0 0 0 0 0
sentient 0 0 0 0 0 0 0
robots 0 0 0 0 0 0 0

Figure 4.4: A sparse bigram count matrix derived from a small sample corpus. The matrix
is overwhelmingly populated with zeros, visually representing the data sparsity problem.
The model has observed bigrams from ‘the chef prepared the fish’, but has zero counts for
plausible but unseen bigrams like (‘prepared’, ‘tofu’) or (‘sentient’, ‘robots’).

P (w1, w2, . . . , wk) =
k∏

i=1

P (wi|wi−1, . . . , wi−N+1)

If the probability of just one of the N-grams in this sequence is zero, the probabil-
ity of the entire sequence becomes zero. This is a catastrophic outcome for a language
model. It means the model has concluded that a potentially grammatical and meaningful
sentence is absolutely impossible. For instance, if our training data included ‘the chef
prepared the fish’ but not ‘the chef prepared the tofu’, our bigram model would assign
P (tofu|prepared) = 0. As a result, the sentence ‘the chef prepared the tofu’ would be
deemed impossible.

In practical applications, this is debilitating. A speech recognition system might refuse
to output a correct transcription because it contains an unseen bigram. A machine trans-
lation system could discard a perfectly good translation for the same reason. A model
that assigns zero probability to legitimate events is not just inaccurate; it’s brittle and
fails to generalize beyond the specific examples it has seen.

Clearly, we cannot trust a model that is so easily broken by novelty. To build robust
language models, we must find a way to assign some small, non-zero probability to unseen
N-grams. This process involves taking a small amount of probability mass from the N-
grams we have seen and redistributing it to those we haven’t. This family of techniques is
known as smoothing, and it is the essential next topic we must address.

The Maximum Likelihood Estimation approach, while intuitive, is brittle. It assigns a
probability of zero to any n-gram that did not appear in the training corpus. As a result,
a single unseen bigram in a test sentence would cause the probability of the entire sen-
tence to become zero, rendering the model useless for evaluating novel text. To overcome
this critical flaw, we must use a set of techniques known collectively as smoothing, or
sometimes discounting.

The core idea behind all smoothing algorithms is to reallocate probability mass. We
take a small amount of probability from the events we have seen and distribute it among
the events we have not seen. Since the total probability must always sum to 1, we cannot
simply invent new probability for unseen n-grams; we must ‘steal’ it from the more fre-
quent, seen n-grams. This ensures that every possible n-gram is assigned a small, non-zero
probability.

This redistribution is conceptually illustrated in Fig. 4.5. In a standard MLE model,
the entire probability mass is divided exclusively among the n-grams observed in the
corpus. In a smoothed model, a fraction of the probability assigned to each seen event is
shaved off. This collected probability mass is then redistributed among the vast number
of unseen events, lifting their probability from zero to a small positive value.

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 59

MLE

Seen Events

Smoothed

Seen Events

Unseen Events

Figure 4.5: Conceptual diagram illustrating probability redistribution in smoothing. The
Maximum Likelihood Estimation (MLE) bar shows probability mass divided exclusively
among seen events. The Smoothed bar shows a fraction of that probability shaved off
from the seen events and reallocated to a new block for unseen events, ensuring they have
a non-zero probability.

In practice, this is achieved by adjusting the counts used in the probability calculation.
Instead of using the raw frequency C(wi−1wi), we use a discounted or adjusted count, c∗.
For a seen n-gram, its adjusted count c∗ will be slightly less than its real count C. For
an unseen n-gram, its adjusted count will be a small positive value instead of zero. This
adjustment acknowledges a fundamental truth: our training corpus is just one sample of
the language, and the fact that an event is unseen does not make it impossible. The next
sections introduce several specific algorithms for calculating these adjusted counts, from
the simple to the more sophisticated.

The most direct and intuitive solution to the zero-probability problem is Laplace
smoothing, also known as add-one smoothing. The core idea is simple: we pretend we
have seen every possible event one more time than we actually have. This ensures that
no event, seen or unseen, has a count of zero. By artificially inflating the counts, we
can reallocate a small portion of the total probability mass to cover the events we didn’t
encounter in our training corpus.

Let’s formalize this for our bigram model. The standard Maximum Likelihood Esti-
mation (MLE) for a bigram probability is:

PMLE(wi|wi−1) =
C(wi−1wi)

C(wi−1)

To apply Laplace smoothing, we simply add one to every bigram count in the numer-
ator. This means a bigram that occurred k times is now treated as if it occurred k + 1
times, and an unseen bigram that occurred 0 times is now treated as having a count of 1.
The adjusted numerator becomes C(wi−1wi) + 1.

However, we must also adjust the denominator to ensure the probabilities still sum
to one. Since we added one to the count of every possible bigram that starts with the
word wi−1, we have effectively increased the total count of words following wi−1 by the
total number of words in our vocabulary, |V |. For every word v ∈ V , we added one to the

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 60

Counts Probabilities

Bigram C(wi−1wi) Adjusted Count PMLE PLaplace

I am 8 9 8/10 = 0.800 9/19 ≈ 0.474
I am not 0 1 0/10 = 0.000 1/19 ≈ 0.053

a fish 1 2 1/5 = 0.200 2/14 ≈ 0.143
a tree 0 1 0/5 = 0.000 1/14 ≈ 0.071

Figure 4.6: A comparison of Maximum Likelihood Estimation (MLE) probabilities and
Laplace (add-one) smoothed probabilities for a sample of bigrams. This table illustrates
how Laplace smoothing redistributes probability mass from seen events (like ‘I am’) to
unseen events (like ‘I fish’), eliminating zero probabilities. The calculations assume the
unigram counts are C(I)=10 and C(a)=5, and the total vocabulary size is |V|=19.

count of the bigram C(wi−1v). Therefore, the denominator, which is the total count for
the prefix wi−1, must be adjusted to C(wi−1) + |V |.

This gives us the final formula for Laplace-smoothed bigram probability:

PLaplace(wi|wi−1) =
C(wi−1wi) + 1

C(wi−1) + |V |
The practical effect of this redistribution is stark, as illustrated in Fig. 4.6. This

table compares the original MLE probabilities from our earlier example with the new
probabilities calculated after applying Laplace smoothing. Observe how bigrams that
previously had a count and probability of zero, such as ‘a fish’, now have a small, non-zero
probability. Conversely, the probabilities of frequent, observed bigrams like ‘I am’ are
slightly reduced. This is the central trade-off of smoothing: we ‘steal’ a bit of probability
mass from the events we have seen and give it to the events we have not.

While elegant in its simplicity, Laplace smoothing has a significant drawback: it is
a blunt instrument. In a typical language model, the vocabulary |V | can be very large,
often tens of thousands of words. By adding one, we reallocate a substantial amount of
probability mass to a massive number of unseen N-grams. The majority of these unseen
N-grams are not just unattested in our corpus—they are nonsensical combinations that
are extremely unlikely to ever occur in real language (e.g., ‘the of a’). Giving all of them
equal probability mass is wasteful and systematically underestimates the probabilities of
the events we actually did see.

For a vocabulary of 50,000 words, a bigram model would have 50, 0002 = 2.5 billion
possible bigrams. Laplace smoothing treats all unseen bigrams as equally plausible, which
is an unrealistic assumption. This problem is exacerbated for trigram and higher-order
N-gram models, where the number of potential N-grams (|V |N) grows exponentially. Be-
cause it moves too much probability mass to the ‘unseen’ column, add-one smoothing
often results in poor performance and is rarely used in modern systems. However, its
simplicity makes it an essential pedagogical tool for understanding the fundamental goal
of smoothing, paving the way for more sophisticated techniques. A common variant, add-k
smoothing (or Lidstone smoothing), replaces the 1 with a small fractional value k (e.g.,
0.01), which can mitigate the issue but doesn’t fully solve it.

While Laplace smoothing offers a simple fix for the zero-probability problem, it is
a blunt instrument. It reallocates probability mass equally among all unseen n-grams,
regardless of how likely they might be, and it does so by taking too much probability away
from high-frequency counts. A more sophisticated and empirically grounded approach is
Good-Turing smoothing, named after its creators Alan Turing and I.J. Good.

The core intuition behind Good-Turing is both clever and powerful: to estimate the

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 61

1 2 3 4 5 6 7 8 9 10

Frequency (r)

N
u
m

b
e
r

o
f

n
-g

ra
m

 t
y
p
e
s

(N
r)

Figure 4.7: A bar chart showing the ‘Frequency of Frequencies’ for n-grams, illustrating
the long-tail distribution used in Good-Turing smoothing.

probability of things you haven’t seen, you should look at the frequency of things you’ve
only seen once. Why? An n-gram that has occurred just once (a singleton) is on the verge
of novelty. It was, until recently, an unseen event. The population of these singletons,
therefore, provides our best evidence for the rate at which new, previously unseen events
will appear in the future.

To formalize this, we first need to count the frequency of frequencies. Let Nc be the
number of n-gram types that occur exactly c times in the corpus. For example, N1 is
the count of all singleton n-grams (those that appeared only once), N2 is the count of
all n-gram types that appeared twice, and so on. When we plot these values for a large
corpus, we typically see a long-tailed distribution, as shown in Fig. 4.7. The number of
singletons (N1) is very large, followed by a smaller N2, an even smaller N3, and so on.

![Fig. 4.7](description: A bar chart titled ‘Frequency of Frequencies’. The x-axis rep-
resents a frequency ‘r’ (n-grams that appeared 1 time, 2 times, etc.), and the y-axis
represents the number of n-gram types (Nr) that had that frequency. This visualizes the
long-tail distribution that Good-Turing smoothing leverages to estimate the probability
of unseen events.)

Good-Turing uses this distribution to estimate the total probability mass that should
be reserved for all zero-count n-grams combined. The estimate is remarkably simple:

Punseen =
N1

N

Here, N is the total number of n-gram tokens in the corpus. We are effectively reas-
signing the probability mass of the singleton bucket to the zero-count bucket. The logic
is that the N1 singletons we observed are a good proxy for the number of new n-grams we
would expect to find if we doubled the size of our corpus.

Of course, if we allocate this probability to unseen events, we must reduce the probabil-
ity of the events we have seen to ensure all probabilities still sum to 1. Good-Turing does
this by adjusting the count c for any n-gram that appeared c > 0 times. This adjusted
count, denoted c∗, is used in place of the original MLE count. The formula is:

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 62

c∗ = (c+ 1)
Nc+1

Nc

The new probability for an n-gram that was seen c times is then PGT = c∗

N . The formula
for c∗ may seem complex, but its effect is intuitive. Since for most corpora Nc+1 < Nc

(there are fewer bigrams that appear 10 times than 9 times), the ratio Nc+1

Nc
will be less

than 1. This means the adjusted count c∗ will almost always be slightly less than the
original count c (c∗ < c), effectively discounting it. The amount of the discount is not
arbitrary, as in Laplace smoothing, but is determined by the actual distribution of word
counts in the corpus.

A significant practical problem arises with this formula: what if we encounter an Nc

for which there is no observed Nc+1? For example, we might have n-grams that occurred
9 times (N9 > 0) but none that occurred 10 times (N10 = 0). This would make c∗ for
n-grams with a count of 9 equal to zero, which is clearly not right. To solve this and
other issues related to sparse frequency-of-frequency counts, a variation called Simple
Good-Turing is typically used in practice. It involves fitting a smooth curve to the plot
of Nc vs. c, providing a reliable estimate for Nc even when the observed value is zero.

In summary, Good-Turing smoothing provides a far more principled method for han-
dling unseen events than Laplace smoothing. By leveraging the distribution of the corpus
itself—specifically using the count of singletons as an estimate for the unknown—it creates
a more accurate and reliable language model.

After building and smoothing an N-gram model, a crucial question arises: how good
is it? Is a trigram model with Good-Turing smoothing superior to a bigram model with
Laplace smoothing for a given task? To answer such questions, we need a way to evaluate
and compare language models. While the ultimate test is often extrinsic—how much the
model improves a real-world application like machine translation—it is incredibly useful
to have an intrinsic evaluation metric that measures the quality of the model independent
of any specific application. The most common intrinsic metric for language models is
perplexity.

Intuitively, perplexity measures how ‘surprised’ or ‘confused’ a model is by a sequence
of words it has not seen during training. A good language model should assign a high
probability to sentences that are well-formed and likely to occur, and a low probability to
sentences that are nonsensical or ungrammatical. If a model assigns a high probability to
a test sentence, it means it was not very surprised by it, which is the desired behavior.
Perplexity is a formalization of this concept of surprise. A lower perplexity score indicates
a better language model, one that is less surprised by the test data. You can think of
perplexity as the average ‘branching factor’ of the language according to the model. If a
model has a perplexity of 50, it suggests that at each word, the model is as confused as if
it had to choose uniformly and independently from 50 possible words.

Formally, the perplexity of a language model on a test set W = w1, w2, ..., wN is the
inverse probability of the test set, normalized by the number of words N . It is calculated
as the N-th root of the inverse of the test set’s probability:

PP (W) = N

√
1

P (w1, w2, ..., wN)
= P (w1, w2, ..., wN)−

1
N

Using the chain rule of probability, which our N-gram models approximate, we can
expand the joint probability P (w1, w2, ..., wN) into a product of conditional probabilities:

P (w1, w2, ..., wN) =
N∏
i=1

P (wi|w1, ..., wi−1)

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 63

Substituting this into the perplexity formula gives us:

PP (W) =

(
N∏
i=1

P (wi|w1, ..., wi−1)

)− 1
N

The normalization by N is crucial because it ensures that the length of the test set does
not unfairly penalize a model. Without it, a longer sentence would almost always have a
lower probability than a shorter one, simply because it is a product of more fractions.

Perplexity has a close and important relationship with another information-theoretic
concept: cross-entropy. The cross-entropy of a model M on a sequence W is defined as:

H(W) = − 1

N
log2 P (w1, w2, ..., wN)

By rewriting the probability term as a product of conditional probabilities, we get:

H(W) = − 1

N

N∑
i=1

log2 P (wi|w1, ..., wi−1)

Cross-entropy can be interpreted as the average number of bits needed to encode each
word in the test set, given our language model. A better model (one that is less surprised)
provides a more efficient compression scheme, resulting in a lower cross-entropy. Looking
at the formulas for perplexity and cross-entropy, we can see their direct relationship:

PP (W) = 2H(W)

This identity shows that minimizing perplexity is equivalent to minimizing cross-
entropy. A lower cross-entropy—meaning the model’s probability distribution is a better
match for the empirical distribution of the test data—will always correspond to a lower
perplexity.

When using perplexity, several practical considerations are vital:

• Unseen Test Data: The test set used for evaluation must be entirely separate from
the training corpus. Evaluating a model on the data it was trained on will result
in an artificially low perplexity, as the model has already memorized the sequences.
The primary goal is to measure how well the model generalizes to new, unseen data.

• Tokenization Consistency: Perplexity scores are only comparable if the models
being evaluated use the exact same vocabulary and tokenization scheme. For ex-
ample, if one model treats ‘don’t’ as a single token and another splits it into ‘do’
and ‘n’t’, their vocabularies and the total word count N of the test set will differ,
making their perplexity scores incomparable.

• Out-of-Vocabulary Words: The handling of unknown words (words in the test
set but not in the training vocabulary) also significantly impacts the final score. A
common practice is to replace all such words with a special <UNK> token in both
training and testing, allowing the model to learn a probability for encountering an
unknown word.

Perplexity is a powerful tool for quickly comparing different language models (e.g.,
bigram vs. trigram, or different smoothing techniques) on a standardized test set. A lower
perplexity score generally correlates with better performance on downstream tasks, making
it an essential first step in the model development and evaluation pipeline. However, it
remains an intrinsic measure. It tells us how well the model predicts text, not necessarily

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 64

I am heading to the|

park store gym

Q W E R T Y U I O

A S D F G H J K

Z X C V B N M

Figure 4.8: A clean illustration of a smartphone’s virtual keyboard. A partial sentence is
typed in the text field (e.g., ‘I am heading to the...’), and the predictive text bar above
the keyboard shows three probable next words (e.g., ‘park’, ‘store’, ‘gym’) that an N-gram
model would suggest.

how useful it is for a specific application. An improvement in perplexity should always be
confirmed with an extrinsic evaluation on the final task if possible.

While the theory of N-grams and perplexity can seem abstract, these models power a
feature millions of people use every day: predictive text on smartphone keyboards. This
application serves as a perfect, concrete illustration of language modeling in action. The
core task of a predictive keyboard is to guess the next word you are likely to type, given
the words you have already entered. This is precisely the problem that N-gram models
are designed to solve.

Let’s imagine you are typing a message. The system has access to the sequence of words
you have written so far, w1, ..., wn−1. Its goal is to present a small set of highly probable
next words, wn. A system based on a bigram model would look only at the immediately
preceding word, wn−1, and calculate the probability P (wn|wn−1) for all words wn in its
vocabulary. The words with the highest conditional probability are the ones suggested to
the user. The system seeks to find:

argmax
w∈V

P (w|wn−1)

Consider the scenario depicted in Fig. 4.8, where a user has typed ‘I am heading to
the’. A bigram model would use ‘the’ as the context. It would then query its stored
probability distributions, which were learned from a massive training corpus. Based on
billions of sentences from the web, the model might find that the probabilities of the words
following ‘the’ are, for instance:

• P (store|the) = 0.008

• P (park|the) = 0.006

• P (gym|the) = 0.005

• P (airport|the) = 0.004

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 65

The system would then display ‘store’, ‘park’, and ‘gym’ as the three most likely
completions. The model is simply reflecting the statistical patterns it observed during
training; in its ‘experience,’ the phrase ‘the store’ was more frequent than ‘the park.’

A more sophisticated system might use a trigram model, which considers the last two
words as context. In our example, the context is ‘to the’. The model now calculates
P (wn|to the). The suggested words might change. For example, while ‘store’ is a common
word to follow ‘the’, the trigram ‘to the store’ might be even more common. Conversely,
a word like ‘airport’ might have a much higher probability given the context ‘to the’ than
it would given only ‘the’. This demonstrates the power of using a larger N-gram window
to capture more specific contextual information.

Several practical considerations are crucial for making such a system work effectively.

1. Smoothing: The importance of smoothing cannot be overstated. Without it, any
word that never appeared after ‘to the’ in the training corpus would be assigned a
probability of zero and could never be suggested. A user trying to type a perfectly
valid but unseen phrase like ‘to the conclave’ would receive no useful predictions.
Smoothing ensures that the model can handle the creativity and variability of human
language.

2. Backoff and Interpolation: What happens if the trigram ‘heading to the’ has
never been seen? A robust system doesn’t just give up. It ‘backs off’ to a smaller
context. If it has no data for the trigram, it uses the bigram model (P (wn|the)). If
that also fails, it could back off to the unigram model, suggesting words based on their
general frequency.1 This ensures the system can always provide some prediction.

3. Efficiency: The model must be incredibly fast. Suggestions need to appear instan-
taneously with each keystroke. To achieve this, the N-gram counts and probabilities
are pre-calculated and stored in efficient data structures, like hash maps or tries,
allowing for near-instant lookups.

This simple keyboard feature elegantly demonstrates the core concepts of this chapter:
approximating the probability of a word sequence, the trade-off between context size and
data sparsity, and the absolute necessity of smoothing to create a useful, generalizable
model.

In this chapter, we have established the fundamental principles of statistical language
modeling. We began with the core task of assigning a probability to a sequence of words,
P (w1, w2, ..., wn). By formalizing this with the chain rule of probability and then simpli-
fying it using the practical Markov assumption, we arrived at the N-gram model. You
have learned how to train these models by calculating Maximum Likelihood Estimation
(MLE) probabilities directly from corpus counts and seen how simple unigram, bigram,
and trigram models capture local word patterns.

A central theme of the chapter was the critical problem of data sparsity. The fact that
any finite training corpus will be missing countless valid word sequences forces naive MLE
models to assign a probability of zero to unseen events. We addressed this by introducing
smoothing, a class of techniques designed to reallocate probability mass from seen to
unseen N-grams. We examined the intuitive but flawed Laplace (add-one) smoothing
before moving to the more sophisticated Good-Turing smoothing, which estimates the
probability of unseen events from the frequency of events seen only once. Finally, we
introduced perplexity as a standard intrinsic metric for evaluating and comparing the
predictive power of different language models.

1A related technique is interpolation, where the final probability is a weighted average of the unigram,
bigram, and trigram probabilities, combining evidence from all N-gram levels.

CHAPTER 4. LANGUAGE MODELING WITH N-GRAMS 66

While foundational, N-gram models are limited by their fixed-context window. They
cannot capture long-range dependencies or complex syntactic structures that span many
words. This inability to model deeper linguistic phenomena is a key motivation for the
more advanced models we will encounter later in this book. In the era of deep learning,
neural networks have provided powerful new architectures for language modeling that can
learn from much broader contexts, a topic we will return to in our final chapter.

Chapter 5

Part-of-Speech Tagging

67

CHAPTER 5. PART-OF-SPEECH TAGGING 68

Part-of-Speech (POS) tagging is the process of assigning a grammatical category to
each word in a text. It is one of the most fundamental tasks in computational linguis-
tics, acting as a foundational layer of analysis for many higher-level applications. The
categories, or tags, correspond to the familiar parts of speech: nouns, verbs, adjectives,
adverbs, prepositions, conjunctions, and more. For example, in the sentence ‘The quick
brown fox jumps over the lazy dog,’ a POS tagger would analyze the sequence of words
and label ‘quick’ as an adjective, ‘jumps’ as a verb, and ‘dog’ as a noun. This process adds
a layer of shallow syntactic annotation to raw text, making it more amenable to further
computational analysis.

Formally, the task is to map an input sentence, represented as a sequence of tokens
W = w1, w2, . . . , wn, to a corresponding sequence of tags T = t1, t2, . . . , tn. Each tag
ti is drawn from a predefined inventory of tags, known as a tagset. This transforms a
simple string of text into a sequence of annotated tokens, enriching the data with valuable
structural information. This is a classic example of a sequence labeling problem, where
the goal is to assign a categorical label to each member of a sequence, often taking into
account the properties of both the individual item and its neighbors to make a decision.

The primary challenge that makes POS tagging a non-trivial computational problem
is lexical ambiguity. A single word form can belong to multiple POS categories depending
on its context. The task is not a simple dictionary lookup; rather, it requires an algorithm
that can use the surrounding words to correctly disambiguate the word’s role. Resolving
this ambiguity is the central problem that modern tagging methods are designed to solve.

At first glance, POS tagging might seem as simple as looking up each word in a
dictionary and assigning its category. This approach, however, quickly fails due to a
fundamental property of language: lexical ambiguity. Many words can belong to more
than one lexical category, and only the surrounding context can resolve the uncertainty.
This is the central challenge that a POS tagger must overcome.

A classic example is the word book. It can function as a verb, meaning ‘to make
a reservation,’ or as a noun, referring to a written work. The words in the immediate
vicinity provide the crucial evidence for disambiguation. Consider the following sentences:

1. Book that flight for me.

2. I need to read that book.

In the first sentence, the imperative structure and the object ‘flight’ signal that book
is an action—a verb. In the second, the preceding verb ‘read’ makes it clear that book is
the object being acted upon—a noun. This contextual dependency, illustrated in Fig. 5.1,
is intuitive for human speakers but must be computationally modeled for a machine.

This problem is far from isolated. Common English words like watch, fly, saw, and
duck are also highly ambiguous. A successful POS tagger cannot simply consider a word
in isolation; it must develop a systematic method for leveraging contextual patterns to
make the correct choice. This is precisely why simple dictionary lookups are insufficient
and more sophisticated probabilistic models are required.

Part-of-speech tagging is rarely an end in itself. Rather, it functions as a crucial
preprocessing step for a vast range of more complex Natural Language Processing tasks.
By resolving the kind of lexical ambiguity we saw with the word ‘book’, tagging provides a
foundational layer of syntactic information that is essential for higher-level analysis. Many
NLP systems are structured as a pipeline, where raw text is passed through a series of
modules, each one enriching the data for the next. As shown in Fig. 5.2, POS tagging
is a fundamental stage in this process, transforming a simple sequence of words into an
annotated stream ready for deeper interpretation.

The most direct consumer of POS information is syntactic parsing (covered in Chapter
6). The goal of a parser is to uncover the grammatical structure of a sentence, identifying

CHAPTER 5. PART-OF-SPEECH TAGGING 69

Bookthat flight

Verb

Read thatbook

Noun

Figure 5.1: A diagram illustrating lexical ambiguity. The surrounding context determines
the part-of-speech tag for the word ‘book’. On the left, the imperative structure suggests
‘Book’ is a verb. On the right, the preceding verb ‘Read’ indicates that ‘book’ is a noun.

Raw Text

Tokenization

POS Tagging

Syntactic Parsing Named Entity Recognition

Figure 5.2: A standard Natural Language Processing (NLP) pipeline. Raw text is pro-
cessed through sequential stages like Tokenization and Part-of-Speech (POS) Tagging. The
resulting annotated data serves as a crucial input for more complex downstream tasks such
as Syntactic Parsing and Named Entity Recognition.

CHAPTER 5. PART-OF-SPEECH TAGGING 70

Tag Description Example

NN Noun, singular or mass book
NNS Noun, plural books
NNP Proper noun, singular London
JJ Adjective big
RB Adverb quickly
VB Verb, base form walk
VBD Verb, past tense walked
VBG Verb, gerund/present participle walking
VBZ Verb, 3rd person singular present walks
IN Preposition/conjunction in, of
DT Determiner the, a
PRP Personal pronoun he, it

Figure 5.3: A selection of the most common tags from the Penn Treebank (PTB) tagset,
with their descriptions and examples.

phrasal constituents like Noun Phrases (NP) or Verb Phrases (VP). This task is immensely
more tractable when the parser already knows the grammatical category of each word. For
instance, a parser can use a simple rule like DET + ADJ + NOUN → NP only if the words in
the input have already been tagged as a determiner, an adjective, and a noun. Without
this prior information, the parser would face a combinatorial explosion of possibilities.

POS tags are also a vital feature for Information Extraction (IE) systems. A key IE
task is Named Entity Recognition (NER), which aims to find and classify entities like
persons, organizations, and locations. A powerful heuristic for identifying named entities
is to look for sequences of capitalized words that have been tagged as proper nouns (NNP).
In a sentence like ‘Dr. Evelyn Reed joined Globex Corporation,’ a tagger would label
‘Evelyn,’ ‘Reed,’ ‘Globex,’ and ‘Corporation’ as proper nouns, giving the NER system a
strong signal that ‘Dr. Evelyn Reed’ and ‘Globex Corporation’ are entities of interest.

Finally, accurate tagging benefits many other applications:

• Machine Translation: The grammatical role of a word is critical for correct trans-
lation. The German word Weg can be a noun (‘the way’) or an adverb (‘away’), and
a translator must know its POS tag to choose the right equivalent.

• Sentiment Analysis: Adjectives and adverbs often carry the strongest sentiment,
so identifying them helps a system focus on the most opinionated parts of a text.

To perform Part-of-Speech tagging consistently, we need a standardized set of labels.
Such a collection of tags is known as a tagset or an annotation schema. While dozens of
tagsets have been developed over the years, each with varying levels of granularity, a few
have become de facto standards within the computational linguistics community, ensuring
that models and corpora from different research groups are comparable. Having a shared
tagset is crucial for evaluating and replicating work in the field.

For English, the most influential and widely used schema is the Penn Treebank
(PTB) tagset. It was developed in the early 1990s as part of the Penn Treebank
Project at the University of Pennsylvania, which involved annotating a large corpus of
Wall Street Journal articles with both part-of-speech and syntactic structure information.
Its widespread adoption has made it the baseline for countless NLP systems and research
papers, and familiarity with it is essential for any practitioner.

The PTB tagset uses short, mnemonic labels to represent grammatical categories. For
instance, NN represents a singular common noun, JJ an adjective, and VB a verb in its
base form. The tags also capture important morphological distinctions. A plural noun is

CHAPTER 5. PART-OF-SPEECH TAGGING 71

tagged NNS (the ‘S’ signifies plural), while a third-person singular present tense verb like
‘walks’ is tagged VBZ (the ‘Z’ is mnemonic for the ‘-s’ ending). A selection of the most
common tags from this schema, along with their descriptions and examples, is provided
in Fig. 5.3. This table serves as a crucial reference for understanding the output of many
standard POS taggers.

The core PTB tagset consists of 36 distinct part-of-speech tags, plus additional tags
for punctuation and symbols. This number represents a deliberate trade-off. A smaller set
of tags might be too coarse, grouping words with different grammatical behaviors (e.g.,
lumping all verb forms together). Conversely, a much larger tagset, while linguistically
richer, would increase the difficulty of manual annotation and create data sparsity issues
for statistical models, as many tags would appear too infrequently in the training corpus.
The Penn Treebank tagset strikes a practical balance that has proven effective for a wide
range of computational tasks.

Before the dominance of statistical methods, the first successful attempts at Part-
of-Speech tagging were rule-based systems. These approaches sought to directly encode
linguistic knowledge into a computer program through a combination of two primary
components: a comprehensive dictionary and a set of handcrafted disambiguation rules.
The core logic was intuitive and mirrored how a human linguist might approach the task.

The process typically occurred in two stages. First, the system would consult a large
lexicon that mapped each known word to its possible set of POS tags. For a word like
‘book,’ the dictionary would return both NN (noun) and VB (verb). For an unambiguous
word like ‘and,’ it would simply return CC (coordinating conjunction). This initial step
would leave many words in a sentence with multiple potential tags.

The second, more critical stage involved applying a set of disambiguation rules to prune
the incorrect tags. These rules were manually written by linguists to capture patterns of
English grammar. For instance, a simple but effective rule might be:

If an ambiguous word follows a determiner (like the, a), it is most likely a noun.
This rule would correctly tag ‘book’ as a noun in the phrase ‘the book.’ Another rule

could state:
If an ambiguous word follows a modal verb (like will, can, must), it is most likely a

verb.
This would correctly tag ‘book’ as a verb in ‘we will book a flight.’ More sophisticated

rules would handle morphology to guess the tags of unknown words. For example, a
word ending in -ing is likely a gerund or present participle (VBG), a word ending in -ly
is likely an adverb (RB), and a capitalized word not at the beginning of a sentence is
likely a proper noun (NNP). One of the most famous early systems, the Brill tagger, even
learned these kinds of contextual rules automatically from a corpus in a process called
transformation-based learning.

While rule-based systems could achieve high accuracy, they suffered from significant
drawbacks. Creating and maintaining the large set of rules required immense effort from
expert linguists and was extremely time-consuming. These systems were also brittle; rules
developed for one domain, like news articles, would often perform poorly on another, like
poetry. Most importantly, the entire rule set had to be re-developed from scratch for
each new language. These challenges of cost, scalability, and portability created a strong
incentive for the field to develop more robust, data-driven methods, which led directly to
the stochastic approaches we will explore next.

While rule-based taggers can achieve reasonable accuracy, they are brittle and laborious
to create. A single new rule can have unintended consequences, and the entire system
must be handcrafted by linguistic experts. To overcome these limitations, the field shifted
towards a more robust and scalable paradigm: stochastic tagging. Instead of relying on
hand-written rules, stochastic approaches use probability and statistics to determine the

CHAPTER 5. PART-OF-SPEECH TAGGING 72

most likely tag for a word in its given context.
The core idea is to leverage a large, pre-annotated corpus as a source of statistical

evidence. By analyzing the frequencies of words and tags in this training data, a stochastic
model can learn the likelihood of different tag assignments. This data-driven approach is
a hallmark of modern computational linguistics, allowing models to automatically capture
complex linguistic patterns without explicit instruction. The task is no longer to define
what is grammatically possible, but rather to calculate what is statistically probable.

Stochastic taggers typically rely on two fundamental pieces of information derived from
the corpus:

1. Lexical Probability (Emission Probability): The likelihood of a word appear-
ing with a particular tag. For example, we can calculate the probability of seeing
the word book given the tag is a noun, NN. This is represented as P (book|NN).

2. Contextual Probability (Transition Probability): The likelihood of a tag fol-
lowing another tag. For instance, we can calculate the probability that a noun (NN)
follows a determiner (DT), such as in the phrase ‘the book’. This is represented as
P (NN|DT).

The central challenge of POS tagging is to combine these probabilities to find the
best possible tag sequence for an entire sentence. We don’t just want the most likely tag
for each word in isolation; we want the sequence of tags T = t1, t2, . . . , tn that is most
probable for the sequence of words W = w1, w2, . . . , wn. Formally, the goal is to find the
sequence T̂ that maximizes the probability P (T |W). To accomplish this, we need a formal
model that can elegantly integrate lexical and contextual probabilities to search for this
optimal path. The Hidden Markov Model, which we turn to next, provides exactly such
a framework.

To formalize the stochastic approach to tagging, we introduce one of the most impor-
tant statistical tools for modeling sequential data: the Hidden Markov Model (HMM).
An HMM is a probabilistic model designed to explain or generate a sequence of observable
events that depend on a sequence of underlying, unobservable (or hidden) states. This
structure makes it perfectly suited for tasks where we can see the output (like words in a
sentence) but need to infer the process that generated it (like the sequence of part-of-speech
tags).

Imagine you are in a windowless room and want to guess the weather outside. You
cannot see the weather directly, making it a hidden state (e.g., Rainy or Sunny). However,
each day a colleague enters the room, and you can observe whether or not they are carrying
an umbrella. This is your observable event. You notice that your colleague is more likely
to carry an umbrella on a rainy day than on a sunny day. Furthermore, you know that
a rainy day is more likely to be followed by another rainy day than by a sunny day. An
HMM provides a mathematical framework to combine these pieces of information to infer
the most likely sequence of weather patterns (the hidden states) given the sequence of
umbrella observations.

Formally, a Hidden Markov Model is defined by the following five components:

• A set of N hidden states, Q = {q1, q2, . . . , qN} In our analogy, this would be the
set of possible weather conditions, such as Q = {Rainy, Sunny}.

• A set of M possible observations, O = {o1, o2, . . . , oM} These are the observable
outputs. In the analogy, this would be O = {Umbrella, No Umbrella}.

• A state transition probability distribution, A This is a matrix A = {aij}
representing the probability of moving from state qi to state qj . The core ‘Markov’

CHAPTER 5. PART-OF-SPEECH TAGGING 73

property is embedded here: the probability of the next state depends only on the
current state.

aij = P (qt = j | qt−1 = i)

• An observation emission probability distribution, B This is a matrix B =
{bj(k)} representing the probability of seeing observation ok when the model is in
hidden state qj . This connects the hidden states to the observable data.

bj(k) = P (ot = k | qt = j)

• An initial state probability distribution, π This is a vector π = {πi} that
specifies the probability of the model starting in state qi at the beginning of a
sequence.

πi = P (q1 = i)

For an HMM to be computationally tractable, it relies on two fundamental simplifying
assumptions. First is the Markov Assumption: the probability of a particular state
depends only on the previous state. This means P (qt | qt−1, qt−2, . . . , q1) = P (qt | qt−1).
While this ignores longer-range dependencies, it dramatically simplifies the model. Second
is the Output Independence Assumption: the probability of an observation depends
only on the state that produced it, not on any other states or previous observations. Thus,
P (ot | qt, qt−1, . . . , q1, ot−1, . . . , o1) = P (ot | qt). Together, these assumptions allow us to
efficiently model complex sequential phenomena, making HMMs a cornerstone of classic
computational linguistics.

To apply a Hidden Markov Model to Part-of-Speech tagging, we must frame the task in
terms of the model’s core components: hidden states, observations, and the probabilities
that connect them. The mapping is direct and intuitive. Given a sentence, the words are
what we can see, while the grammatical tags are the hidden structure we wish to uncover.

Formally, we define the components of the HMM as follows:

• Observations (O): The sequence of words in the sentence, w1, w2, . . . , wn. For the
sentence ‘Book that flight,’ the observation sequence is ('Book', 'that', 'flight').
These are the evident, observable outputs of our model.

• Hidden States (Q): The sequence of Part-of-Speech tags, t1, t2, . . . , tn, corre-
sponding to each word. The goal of the tagging process is to find the most probable
sequence of these states. For our example, a plausible hidden state sequence is ⌋

(Verb, Determiner, Noun). The set of all possible states is the complete tagset
we are using (e.g., the 36 main tags of the Penn Treebank).

With the states and observations defined, the HMM is characterized by two key sets
of probabilities, which are learned from an annotated corpus during a training phase.

First, we have the transition probabilities. These answer the question: given that
we are in a certain state (tag), what is the probability of moving to another state (tag)?
This is the probability of a tag ti given the previous tag ti−1, denoted as P (ti|ti−1). For
instance, English grammar dictates that a determiner is very likely to be followed by a
noun. Therefore, the transition probability P (Noun|Determiner) will be high. Conversely,
the probability of a determiner following another determiner, P (Determiner|Determiner),
will be extremely low. These probabilities effectively encode syntactic knowledge of the
language.

Second, we have the emission probabilities. These answer the question: given
that we are in a particular hidden state (tag), what is the probability of observing a
specific word? This is the probability of a word wi given its tag ti, denoted as P (wi|ti).

CHAPTER 5. PART-OF-SPEECH TAGGING 74

Verb Determiner Noun

'Book' 'that' 'flight'

Start

P(Determiner | Verb) P(Noun | Determiner)

P(Determiner | Determiner)

P('Book' | Verb) P('that' | Determiner) P('flight' | Noun)

Figure 5.4: A diagram of a Hidden Markov Model (HMM) for Part-of-Speech (POS) tag-
ging. The hidden states (Verb, Determiner, Noun) are shown in circles, and they generate
observable words (‘Book’, ‘that’, ‘flight’), shown in rectangles. The solid arrows between
states represent transition probabilities (the likelihood of one tag following another), while
the dashed arrows from states to words represent emission probabilities (the likelihood of
a tag generating a specific word).

Emission probabilities capture lexical knowledge. For example, the probability of seeing
the word ‘book’ given the tag Noun, P (‘book’|Noun), will be significantly higher than
the probability of seeing ‘book’ given the tag Adverb, P (‘book’|Adverb). This is how the
model handles lexical ambiguity; while ‘book’ can be both a Noun and a Verb, one is
typically more probable than the other, and the model learns these likelihoods from the
corpus.

The conceptual model, illustrated in Fig. 5.4, shows this generative process. The
HMM starts in an initial state, transitions to a hidden tag (e.g., Verb), and then emits
an observable word (e.g., ‘Book’). It then transitions to the next tag (Determiner), emits
the next word (‘that’), and so on. Our task, however, is the inverse of generation. We are
given the sequence of observations—the words—and our goal is to find the single most
likely sequence of hidden states—the tags—that could have produced them. This decoding
problem is precisely what the Viterbi algorithm, which we will discuss next, is designed
to solve.

Once we have formally defined a Hidden Markov Model, the next logical step is to train
it. Training an HMM simply means learning its parameters from data. For a POS tagger,
this data is a large, pre-tagged corpus—a collection of text where each word has already
been assigned its correct tag by a human annotator. We use this ‘gold-standard’ data to
estimate the two sets of probabilities that define our model: transition probabilities and
emission probabilities. This section focuses on the former.

Transition probabilities answer the question: given that we have just seen a particular
tag, what is the likelihood of seeing another specific tag next? Formally, this is the condi-
tional probability of tag ti occurring given that the previous tag was ti−1, which we denote
as P (ti|ti−1). This captures the grammatical structure of a language. For instance, in En-
glish, it is highly probable that a determiner (like ‘the’) will be followed by a noun (like
‘cat’), so we would expect the probability P (Noun|Determiner) to be high. Conversely,

CHAPTER 5. PART-OF-SPEECH TAGGING 75

Current Tag (ti)

Previous Tag (ti−1) Determiner Noun Verb </s>

<s> 0.60 0.30 0.10 0.00
Determiner 0.05 0.90 0.05 0.00
Noun 0.05 0.15 0.50 0.30
Verb 0.40 0.30 0.10 0.20

Figure 5.5: A simplified example of a transition probability matrix. Each cell shows the
probability of the current tag (ti) occurring, given the previous tag (ti−1). The special tag
texttt<s> marks the start of a sentence and
texttt</s> marks the end. Note that each row’s probabilities sum to 1.

the probability of a determiner following another determiner, P (Determiner|Determiner),
would be extremely low.

We calculate these probabilities directly from the frequencies in our annotated corpus
using a method called Maximum Likelihood Estimation (MLE). The formula is straight-
forward and intuitive:

P (ti|ti−1) =
C(ti−1, ti)

C(ti−1)

Here, C(ti−1, ti) is the count of how many times the tag sequence ti−1 followed by
ti appears in the corpus. The denominator, C(ti−1), is the total count of the tag ti−1

appearing anywhere in the corpus. For example, to calculate P (Noun|Determiner), we
would count every instance of a determiner followed by a noun and divide it by the total
count of all determiners.

A special case arises at the beginning of a sentence, as the first word has no preceding
tag. To handle this, we introduce a special start-of-sentence tag, often denoted as <s>.
The transition probability from this special state, P (ti|<s>), represents the likelihood of
a sentence beginning with tag ti. This is calculated by counting how many sentences in
the corpus start with tag ti and dividing by the total number of sentences.

Once we compute these probabilities for every possible pair of tags in our tagset, we
can organize them into a transition probability matrix. As shown in Fig. 5.5, the rows
of this matrix represent the preceding tag (ti−1) and the columns represent the current
tag (ti). Each cell contains the corresponding conditional probability. A crucial property
of this matrix is that the probabilities in each row must sum to 1, since some tag must
always follow the preceding one. ∑

ti∈T
P (ti|ti−1) = 1

This matrix forms one of the core components of our HMM, encoding the learned
grammatical patterns of the language. The second component, the emission probabilities,
will tell us which words are likely for each tag.

While transition probabilities model the relationship between tags, emission probabil-
ities model the link between a tag and a word. They answer the question: given that we
are in a particular hidden state (a POS tag), what is the likelihood of observing a specific
word? Formally, this is the conditional probability of a word w given a tag t, denoted as
P (w|t). These probabilities are also known as lexical likelihoods.

Like transition probabilities, emission probabilities are estimated directly from a large,
tag-annotated corpus using Maximum Likelihood Estimation (MLE). The calculation is a
straightforward counting exercise. To find the probability of a word w being generated by

CHAPTER 5. PART-OF-SPEECH TAGGING 76

Word

Tag book flight walk the <UNK>

NN (Noun) 0.0015 0.0020 0.0008 0.0000 0.0001
VB (Verb) 0.0004 0.0001 0.0035 0.0000 0.00005
DT (Determiner) 0.0000 0.0000 0.0000 0.4500 0.0000

Figure 5.6: A sample emission probability matrix. Cells contain the conditional probability
P(word | tag). For instance, the word ‘book’ is more likely to be a Noun (0.0015) than a
Verb (0.0004). The special token <UNK> handles out-of-vocabulary words, with non-zero
probabilities for open-class tags like Noun.

a tag t, we count how many times the word w appeared with the tag t in the corpus and
divide it by the total count of the tag t.

The formula is as follows:

P (wi|ti) =
Count(ti, wi)

Count(ti)

Here:

• Count(ti, wi) is the number of times the word wi is tagged with ti in the corpus.

• Count(ti) is the total number of times the tag ti appears in the corpus.

For example, let’s calculate the emission probability for the word ‘book’ given the tag
Noun (NN). Suppose our training corpus contains 50,000 instances of the NN tag. We find
that the word ‘book’ is tagged as a noun 75 times. The emission probability would be:

P (‘book’|NN) =
Count(NN, ‘book’)

Count(NN)
=

75

50, 000
= 0.0015

Now, suppose the tag Verb (VB) appears 30,000 times, and the word ‘book’ is tagged
as a verb (‘to book a flight’) only 12 times. The probability is:

P (‘book’|VB) =
Count(VB, ‘book’)

Count(VB)
=

12

30, 000
= 0.0004

These probabilities quantify the lexical ambiguity we discussed earlier. The word
‘book’ can be a verb, but it is far more likely to be a noun. This information is crucial for
the HMM when it needs to decide between competing tag sequences. We can pre-calculate
these probabilities for every word-tag pair in our training vocabulary and store them in a
large emission probability matrix. A small sample of such a matrix is shown in Fig. 5.6.

A significant challenge arises with words that appear in our test data but were never
seen during training. These are often called out-of-vocabulary (OOV) words. Using the
formula above, any unseen word would have a count of zero, resulting in an emission
probability of P (wOOV |t) = 0 for all tags t. This is problematic because it makes any
sentence containing that word impossible to parse. A standard technique to handle this
is to replace all rare words (e.g., those appearing only once) in the training data with a
special ‘unknown word’ token, <UNK>. We then calculate emission probabilities for <UNK>
just like any other word. When an OOV word is encountered during tagging, we assign
it the pre-computed probabilities for <UNK>, providing a non-zero chance for the model to
proceed.

Once our Hidden Markov Model is trained—meaning we have calculated all the nec-
essary transition and emission probabilities from our corpus—we face the central task of

CHAPTER 5. PART-OF-SPEECH TAGGING 77

decoding. Given a new sentence, which is a sequence of observations (words), how do we
find the single most likely sequence of hidden states (POS tags) that produced it?

A simple but flawed approach would be to assign each word the tag that is most
probable for it in isolation. This greedy method, however, fails to consider the context. A
word might be slightly more likely to be a noun than a verb in general, but if it follows a
modal verb like ‘will,’ the probability of it being a verb is much higher. The optimal tag
sequence must account for the entire sequence, balancing both the emission probabilities
(P (word|tag)) and the transition probabilities (P (tagi|tagi−1)). Exhaustively calculating
the probability of every possible tag sequence is computationally intractable, as the number
of sequences grows exponentially with the length of the sentence.

The solution to this problem is the Viterbi algorithm, an efficient dynamic program-
ming approach that guarantees finding the optimal tag sequence without this exponential
overhead. Dynamic programming works by breaking a complex problem into a series of
simpler, overlapping subproblems and storing the solutions to these subproblems to avoid
re-computation. In the context of POS tagging, the Viterbi algorithm moves from the
first word to the last, and at each step, it calculates the most probable path to that point.

Imagine building a grid, or trellis, where the columns represent the words in the sen-
tence and the rows represent all possible POS tags. The Viterbi algorithm fills this trellis
one column at a time. For each cell in the grid—representing a specific tag for a specific
word—the algorithm calculates the probability of the most likely tag sequence that ends in
that very cell. It does this by considering all possible tags for the previous word, extending
each of those paths to the current cell, and keeping only the path with the highest total
probability.

Formally, we define vt(j) as the probability of the most probable tag sequence for the
first t words of the sentence that ends with tag j. This value can be calculated recursively.
To find the value for the cell at word t and tag j, we look at all the values calculated for
the previous word, t − 1. For each previous tag i, we calculate a candidate probability
by multiplying three values: the stored Viterbi probability of the previous cell (vt−1(i)),
the transition probability from tag i to tag j, and the emission probability of the current
word (wordt) given tag j. The new Viterbi probability, vt(j), is the maximum of these
candidate probabilities.

The core recursive step is defined as: vt(j) = maxNi=1 [vt−1(i) · P (tagj |tagi) · P (wordt|tagj)]
While calculating this maximum probability, the algorithm must also store a back-

pointer for each cell, indicating which of the previous tags (i) led to this maximum value.
This is crucial for reconstructing the final path.

The entire process unfolds in three stages:

1. Initialization: For the first word in the sentence, the Viterbi probability for each tag
is simply the initial or start-state probability of that tag multiplied by the emission
probability of the first word given that tag.

2. Recursion: For each subsequent word from t = 2 to the end of the sentence, and for
each possible tag j, compute vt(j) using the formula above and store a backpointer
to the previous tag that yielded the maximum value.

3. Termination and Path Retrieval: After processing the final word, the algorithm
identifies the tag with the highest overall Viterbi probability. This tag is the final
state in the most likely sequence. From there, it follows the chain of backpointers
backward through the trellis to the beginning of the sentence, thereby recovering
the complete, optimal sequence of POS tags.

To make the Viterbi algorithm concrete, let’s walk through the process with a simple
sentence: ‘Book that flight’. Our goal is to find the most probable sequence of Part-of-

CHAPTER 5. PART-OF-SPEECH TAGGING 78

Book (t=1) that (t=2) flight (t=3)

N

V

DET

<s>

0.12

0.42

0.189

0.1210

0.0038

Figure 5.7: A Viterbi trellis diagram for a short sample sentence. The horizontal axis
represents the sequence of words, and the vertical axis represents the possible states (tags).
Each cell in the grid shows the calculated probability for that tag at that position, with
backpointers indicating the most likely path, visually demonstrating the decoding process.

Speech tags. For this example, we will use a highly simplified tagset consisting of only three
tags: Noun (N), Verb (V), and Determiner (DET). We will also assume we have already
trained an HMM on a corpus, yielding the following transition and emission probabilities.

Transition Probabilities P (tagi|tagi−1)
This table shows the probability of a tag given the preceding tag. <s> represents the

start of a sentence.

N V DET

<s> 0.3 0.7 0.0
N 0.2 0.7 0.1
V 0.3 0.2 0.5
DET 0.8 0.2 0.0

Emission Probabilities P (word|tag)
This table shows the probability of observing a word, given a specific tag.

Book that flight

N 0.4 0.0 0.8
V 0.6 0.1 0.1
DET 0.0 0.9 0.0

The Viterbi algorithm proceeds by constructing a probability matrix, often visualized
as a trellis (see Fig. 5.7). Let vt(j) be the highest probability of a tag sequence ending at
time step t with tag j. We will also store backpointers, bt(j), which tell us which previous
tag led to this highest probability.

Initialization Step (t=1, word=‘Book’)For the first word, the Viterbi probability is the
product of the start transition probability and the emission probability.

• For tag N: v1(N) = P (‘Book’|N)× P (N |<s>) v1(N) = 0.4× 0.3 = 0.12

CHAPTER 5. PART-OF-SPEECH TAGGING 79

• For tag V: v1(V) = P (‘Book’|V)× P (V |<s>) v1(V) = 0.6× 0.7 = 0.42

At this point, the most likely tag for ‘Book’ in isolation is Verb (0.42 > 0.12), but
we must consider the entire sequence. These values form the first column of our Viterbi
trellis, as depicted in Fig. 5.7.

Recursive Step (t=2, word=‘that’)Now we move to the second word, ‘that’. For each
possible tag of ‘that’, we calculate the probability by considering all possible paths from
the previous step. The general formula is: vt(j) = P (wt|tagj) × maxi=1..N [vt−1(i) ×
P (tagj |tagi)]

In our simplified example, ‘that’ can only be a Determiner (DET) as its emission
probability for other tags is zero.

• For tag DET: We need to find the most probable path leading to DET from the
previous tags (N or V).

– Path from N: v1(N)× P (DET |N) = 0.12× 0.1 = 0.012

– Path from V: v1(V)× P (DET |V) = 0.42× 0.5 = 0.210

The maximum of these two values is 0.210, which came from the previous tag being
V. We now multiply this by the emission probability of ‘that’ given DET.

v2(DET) = P (‘that’|DET)× 0.210 v2(DET) = 0.9× 0.210 = 0.189

We also store the backpointer: b2(DET) = V . This means the most likely path to
‘that’ being a DET comes from ‘Book’ being a V. In Fig. 5.7, this is shown as an
arrow pointing from the V cell at t=1 to the DET cell at t=2.

Recursive Step (t=3, word=‘flight’)We repeat the process for the final word, ‘flight’.
In our tables, ‘flight’ can be a Noun or a Verb.

• For tag N: The only possible preceding tag is DET (from step t=2).

– Path from DET: v2(DET)× P (N |DET) = 0.189× 0.8 = 0.1512

The maximum is trivially 0.1512. Now we include the emission probability.

v3(N) = P (‘flight’|N)× 0.1512 v3(N) = 0.8× 0.1512 = 0.12096

The backpointer is b3(N) = DET .

• For tag V:

– Path from DET: v2(DET)× P (V |DET) = 0.189× 0.2 = 0.0378

The maximum is 0.0378.

v3(V) = P (‘flight’|V)× 0.0378 v3(V) = 0.1× 0.0378 = 0.00378

The backpointer is b3(V) = DET .

The final column of our trellis now contains the probabilities v3(N) = 0.12096 and
v3(V) = 0.00378.

Termination and Path RetrievalThe final step is to identify the highest probability in
the last column and trace the backpointers to the beginning of the sentence.

1. Identify the best final tag: The highest probability in the final column is v3(N) =
0.12096. Therefore, the most likely tag for the last word, ‘flight’, is N.

CHAPTER 5. PART-OF-SPEECH TAGGING 80

2. Trace back: We now follow the backpointers from this final state.

• The backpointer for ‘flight’/N is b3(N) = DET . So, the tag for ‘that’ is DET.
• The backpointer for ‘that’/DET is b2(DET) = V . So, the tag for ‘Book’ is V.

By reversing the sequence we traced, we get our final answer: V - DET - N.
The probability of this entire sequence is the final value we calculated: 0.12096. This

step-by-step process of filling the trellis from left to right, storing only the maximum
probability and a backpointer at each cell, is the essence of the Viterbi algorithm. It uses
dynamic programming to efficiently find the optimal path without needing to score all
possible tag sequences, which would be computationally intractable for any real sentence.
The trellis in Fig. 5.7 provides a clear visual map of this computation, with the final traced
path representing the single most likely grammatical structure for the sentence according
to our model.

After training a Part-of-Speech tagger, we must measure its performance to under-
stand its effectiveness. The standard procedure involves evaluating the tagger’s output
against a gold-standard test set—a corpus of text that has been manually annotated by
expert linguists and was held out from the training data. These human-assigned tags are
considered the correct answers, or ground truth.

The primary metric used for this evaluation is accuracy, which is the percentage of
words that the tagger assigns the correct tag to when compared against the gold standard.
The calculation is simple and intuitive:

Accuracy =
Number of correctly tagged words

Total number of words
For instance, if a test set contains 10,000 words and the tagger correctly labels 9,750

of them, its accuracy is 97.5%. For a well-resourced language like English, state-of-the-art
POS taggers routinely achieve accuracy scores in the 97–98% range.

While impressive, this single accuracy figure can be slightly misleading. Many words
in a language have only one common POS tag, making them easy to classify. A more
insightful evaluation, therefore, also measures performance on specific subsets of the data.
One of the most important secondary metrics is the accuracy on unknown words (also
called out-of-vocabulary words)—those that were not present in the training corpus. A
tagger’s ability to correctly label these words is a critical test of its generalization power,
as it cannot rely on learned emission probabilities and must infer the correct tag purely
from the sequence context provided by the transition probabilities.

This chapter has introduced Part-of-Speech tagging, a cornerstone task in computa-
tional linguistics that resolves lexical ambiguity by assigning grammatical categories to
words. We traced the evolution from early rule-based systems to the dominant stochastic
methods, which leverage annotated corpora to learn probabilistic models.

At the heart of our discussion was the Hidden Markov Model (HMM), a powerful frame-
work for sequence labeling. The HMM models POS tagging by combining two essential
probabilities learned from data:

• Transition Probabilities: The likelihood of a tag sequence, P (ti|ti−1).

• Emission Probabilities: The likelihood of a word given a tag, P (wi|ti).

We demonstrated that finding the optimal tag sequence is not a trivial task. The solu-
tion lies in the Viterbi algorithm, an elegant and efficient dynamic programming method
for decoding the most probable sequence of hidden states. This combination of HMMs for
modeling and Viterbi for decoding provides a robust template for solving a wide range of
sequence-based problems you will encounter later in this book.

Chapter 6

Syntactic Parsing

81

CHAPTER 6. SYNTACTIC PARSING 82

Having learned to assign a part-of-speech tag to each word, we now move from a linear
sequence of tags to a deeper, more structured understanding of a sentence. While knowing
that a sentence contains a noun followed by a verb and another noun is useful, it doesn’t
fully capture the relationships between them. It doesn’t tell us who is doing what to
whom. This is the domain of syntactic parsing, the process of analyzing a string of
words to reveal its underlying grammatical structure according to a formal grammar. The
goal is not merely to verify if a sentence is grammatically correct, but to produce a formal
representation—typically a tree—that makes its syntactic relationships explicit.

This structural analysis is crucial for resolving ambiguity and enabling true language
understanding. Consider the classic sentence: ‘I saw the man with the telescope.’ This
sentence has two distinct interpretations. Did I use a telescope to see the man? Or did I
see a man who was holding a telescope? A simple sequence of POS tags is identical for
both meanings. Syntactic parsing, however, forces us to commit to a specific structure
that resolves this ambiguity. In the first interpretation, the phrase ‘with the telescope’
modifies the verb ‘saw,’ describing the instrument of seeing. In the second, it modifies
‘the man,’ describing an attribute of the man. The ability to computationally produce
the distinct structural representations for these two meanings is a core goal of parsing.

Uncovering this structure is a foundational step for nearly all complex downstream
NLP tasks. For a machine translation system to correctly translate a sentence, it must
first understand the relationships between its components. For an information extraction
system to identify that a company acquired another, it must parse the sentence to identify
the subject, verb, and object. Similarly, a question-answering system must parse both
the question and the potential answer text to find a structural match. By transforming
a flat string of text into a hierarchical or relational structure, syntactic parsing provides
the scaffolding upon which meaning can be built. In this chapter, we will explore the
dominant computational formalisms and algorithms developed to achieve this.

Once we accept the goal of revealing a sentence’s grammatical structure, a fundamen-
tal question arises: what should that structure look like? In computational linguistics,
two dominant paradigms have emerged to answer this question, each offering a different
philosophical perspective on what constitutes syntax. These are constituency parsing and
dependency parsing.

Constituency parsing, also known as phrase-structure parsing, is built on the idea that
sentences are composed of nested components called constituents or phrases. According
to this view, words group together to form larger units, which in turn group together to
form even larger ones, culminating in the complete sentence. The primary output of a
constituency parser is a hierarchical tree that explicitly shows this grouping. For instance,
the words ‘the’, ‘old’, and ‘dog’ combine to form a Noun Phrase (NP), and ‘chased the cat’
forms a Verb Phrase (VP). The NP and VP then combine to form the full sentence (S).
This approach focuses on identifying the boundaries of these phrasal units and arranging
them in a hierarchical structure.

Dependency parsing, in contrast, models syntax as a set of relationships between indi-
vidual words. The structure is not a hierarchy of phrases but a graph of dependencies. In
this framework, every word in the sentence, except for one (the root, typically the main
verb), is a dependent of another word, which is its head. These directed links, or arcs,
are labeled with the specific grammatical function they represent, such as nsubj for a
nominal subject or dobj for a direct object. This approach forgoes phrasal nodes entirely
and instead focuses on representing how words modify or depend on each other, revealing
the functional architecture of the sentence.

The fundamental difference between these two formalisms is starkly illustrated in
Fig. 6.1.

[DIAGRAM: Fig. 6.1]

CHAPTER 6. SYNTACTIC PARSING 83

Constituency Parsing

The old dog chased the cat

DT JJ NN VBD DT NN

NP NP

VP

S

Dependency Parsing

The old dog chased the cat

det
amod

nsubj

det

dobj

ROOT

Figure 6.1: A side-by-side comparison of Constituency Parsing and Dependency Parsing
for the sentence ‘The old dog chased the cat’. The left side shows the hierarchical phrase
structure, grouping words into constituents like Noun Phrases (NP) and Verb Phrases
(VP). The right side shows the dependency graph, where directed, labeled arcs represent
the grammatical relationships (e.g., subject, object) between individual words.

A side-by-side comparison diagram showing the same sentence, e.g., ‘The old dog
chased the cat’, analyzed using both constituency and dependency parsing. The left side
will show the hierarchical phrase structure tree (constituency), and the right side will show
the dependency graph with directed, labeled arcs between words.

As the figure shows, the constituency tree for ‘The old dog chased the cat’ contains
non-terminal nodes like NP and VP that are not words from the original sentence. It tells
us that ‘The old dog’ is a single, cohesive unit. The dependency graph, on the other hand,
consists only of the words themselves, connected by labeled arcs. It explicitly shows that
‘dog’ is the subject of ‘chased’ and ‘cat’ is its object, while ‘old’ directly modifies ‘dog’.
In essence, constituency parsing asks, ‘What components make up this sentence?’, while
dependency parsing asks, ‘Which words depend on which other words, and how?’. The
remainder of this chapter will explore the formalisms and algorithms behind each of these
powerful paradigms.

We first explore constituency parsing, an approach rooted in the idea that sentences are
not flat strings of words but have an underlying hierarchical structure. The fundamental
goal of this paradigm is to identify and organize groups of words that function as a single
grammatical unit. These units are called constituents or phrases.

Consider the sentence, ‘The little dog barked loudly’. Intuitively, we understand that
‘the little dog’ acts as a single block; it is the subject of the sentence. This group of
words is a constituent. Similarly, ‘barked loudly’ functions as another block describing
the action. This is also a constituent. Constituency parsing is the task of systematically
breaking the sentence down into these nested blocks.

How do we formally identify a constituent? Linguists use several diagnostic tests to
provide evidence for these groupings.

• Substitution: A sequence of words is likely a constituent if it can be replaced by
a single word, often a pronoun or pro-form, without making the sentence ungram-
matical. In our example, ‘The little dog barked loudly’, we can replace ‘The little

CHAPTER 6. SYNTACTIC PARSING 84

dog’ with ‘It’ to get ‘It barked loudly’. This successful substitution strongly suggests
‘The little dog’ is a valid constituent.

• Movement: Constituents can often be moved to different positions within a sen-
tence. For example, using a construction known as a cleft sentence, we can transform
‘The cat sat on the mat ’ into ‘It was on the mat that the cat sat.’ The fact that the
entire phrase ‘on the mat’ can be moved as a single, coherent unit is evidence of its
status as a constituent.

These constituents are not just arbitrary clusters; they belong to specific grammatical
categories. For example, ‘the little dog’ is a Noun Phrase (NP) because its most
important word, or head, is a noun (‘dog’). Likewise, ‘barked loudly’ is a Verb Phrase
(VP), and ‘on the mat’ is a Prepositional Phrase (PP). The entire sentence itself is
considered the top-level constituent, typically labeled S.

The central insight of this approach is that these phrases are nested within each other
to form the complete sentence. An NP and a VP might combine to form a sentence (S).
A VP might contain within it another NP (as in ‘saw the big cat ’) or a PP (as in ‘sat on
the mat ’). This creates a recursive, hierarchical structure. The output of a constituency
parser is a phrase-structure tree (or simply a parse tree) that visually represents this
hierarchy. In this tree, the words of the sentence appear as the leaves (or terminal nodes)
at the bottom. The labels for the constituent phrases (NP, VP, PP, etc.) are the internal
non-terminal nodes. The very top node, the root of the tree, is the S node representing
the entire sentence.

This tree-based representation makes a sentence’s internal grammar explicit. But how
do we know which combinations of words and phrases are valid? How can a computer
systematically build such a tree from a string of words? To answer these questions, we
need a formal mechanism for defining the rules of sentence structure. This mechanism is
the Context-Free Grammar, which we will explore next.

To computationally model the hierarchical structure of constituency, we need a formal
mechanism that can define the set of all valid structures in a language. The most common
tool for this is the Context-Free Grammar (CFG), a formalism with deep roots in
both linguistics, through the work of Noam Chomsky, and in computer science, where it
is used to define the syntax of programming languages. A CFG provides a finite set of
rules that can generate an infinite set of grammatical sentences, capturing the productive
and recursive nature of human language.

Formally, a Context-Free Grammar G is a 4-tuple:

G = (N,Σ, R, S)

Let’s break down each of these four components.

1. N : A finite set of non-terminal symbols. These are the variables of our grammar,
representing syntactic categories or phrases. They are ‘non-terminal’ because they
can be broken down further into other symbols. Think of them as the labels for the
internal nodes in a parse tree—symbols like Noun Phrase (NP), Verb Phrase (VP),
or Prepositional Phrase (PP). By convention, non-terminals are represented with
uppercase letters or abbreviations.

2. Σ: A finite set of terminal symbols, sometimes called the alphabet or the lexicon.
These are the actual words of the language that will appear in our sentences, such
as ‘cat’, ‘sees’, or ‘with’. They are ‘terminal’ because they cannot be rewritten
into other symbols; they represent the end points of the generation process and
correspond to the leaves of a parse tree. The set of non-terminals and terminals
must be disjoint, meaning no symbol can be both: N ∩ Σ = ∅.

CHAPTER 6. SYNTACTIC PARSING 85

Component Definition

Non-terminals (N) {S,NP, V P, PP,Det,N, V, P}
Terminals (Σ) {‘the’, ‘cat’, ‘sat’, ‘on’, ‘mat’}
Start Symbol S

Production Rules (R) S → NP V P
V P → V PP
PP → P NP
NP → Det N
Det → ‘the’
N → ‘cat’ | ‘mat’
V → ‘sat’
P → ‘on’

Figure 6.2: The components of a simple Context-Free Grammar (CFG) based on the text.

3. R: A finite set of production rules. These rules are the heart of the grammar,
specifying how non-terminals can be rewritten. Each rule is of the form A → β,
where A is a single non-terminal from the set N , and β is a sequence of one or
more symbols from the combined set of non-terminals and terminals (N ∪Σ)∗.1 The
arrow → can be read as ‘can be rewritten as,’ ‘consists of,’ or ‘can be expanded to.’
For instance, the rule S -> NP VP states that a sentence S can consist of a Noun
Phrase NP followed by a Verb Phrase VP. It is common to use the pipe symbol | as
a convenient shorthand to group rules with the same left-hand side. For example,
NP -> Det N | N is equivalent to the two separate rules:

• NP -> Det N

• NP -> N

Production rules can be broadly categorized into two types. Syntactic rules specify
how phrase types are composed of other phrases (e.g., VP -> V NP), while lexical
rules (or lexicon rules) connect the syntactic categories to the terminal words (e.g.,
N -> 'cat').

4. S: A designated start symbol, which must be a member of the non-terminal set N .
The start symbol is the entry point for the grammar, representing the highest-level
category from which all valid sentences in the language defined by the grammar can
be generated. For natural language grammars, this is almost always the symbol for
sentence, typically denoted as S.

Let’s make this concrete with the grammar we will use to parse our upcoming example
sentence. The components of this simple grammar are laid out in Fig. 6.2.

According to Fig. 6.2, our set of non-terminals is N = {S, NP, VP, PP, Det, N, V, P}.
Our terminals are the words themselves: Σ = {‘the’, ‘cat’, ‘sat’, ‘on’, ‘mat’}. The start
symbol is S. The production rules in the table define the valid sentence structures. For
example:

• S -> NP VP is the fundamental rule for an English sentence.

• VP -> V PP defines a Verb Phrase that consists of a Verb followed by a Prepositional
Phrase.

1The asterisk notation (N ∪ Σ)∗ means ‘a sequence of zero or more symbols’ from the given set. For
most practical parsing grammars, rule right-hand sides have at least one symbol.

CHAPTER 6. SYNTACTIC PARSING 86

• NP -> Det N defines a Noun Phrase as a Determiner followed by a Noun.

• PP -> P NP defines a Prepositional Phrase as a Preposition followed by a Noun
Phrase.

Notice the recursive potential here. A VP can contain a PP, which in turn contains
an NP. This ability for rules to call upon other rules, including themselves (either directly
or indirectly), is what gives CFGs the power to generate the complex, nested structures
characteristic of human language. The process of using these rules to generate a string of
terminals from the start symbol is called a derivation. A derivation starts with S and
repeatedly applies rules from R, replacing a non-terminal with the right-hand side of one
of its rules, until only terminal symbols remain. The set of all terminal strings that can
be derived from the start symbol constitutes the language generated by the grammar.

To see how a CFG generates a sentence structure, let’s parse the classic example: ‘The
cat sat on the mat’. We first need a grammar—a set of production rules—that can account
for the structure of this specific sentence. Consider the following simple grammar, which
we will call G1:

• S → NP VP (A sentence is a Noun Phrase followed by a Verb Phrase)

• NP → Det N (A Noun Phrase is a Determiner followed by a Noun)

• VP → V PP (A Verb Phrase is a Verb followed by a Prepositional Phrase)

• PP → P NP (A Prepositional Phrase is a Preposition followed by a Noun Phrase)

• Det → 'the'

• N → 'cat' | 'mat'

• V → 'sat'

• P → 'on'

The first four are phrasal rules that define how non-terminals can be rewritten into
other non-terminals. The last four are lexical rules which ground the grammar by con-
necting non-terminal symbols (parts of speech) to the actual words, or terminals, in our
language.

Using these rules, we can generate the sentence from the start symbol S through a
sequence of substitutions called a derivation. In a left-most derivation, we always expand
the left-most non-terminal at each step:

1. S

2. ⇒ NP VP (by applying the rule S → NP VP)

3. ⇒ Det N VP (by applying NP → Det N to the left-most non-terminal, NP)

4. ⇒ 'The' N VP

5. ⇒ 'The' 'cat' VP

6. ⇒ 'The' 'cat' V PP

7. ⇒ 'The' 'cat' 'sat' PP

8. ⇒ 'The' 'cat' 'sat' P NP

CHAPTER 6. SYNTACTIC PARSING 87

S

NP

VP

PP

NP

Det N V P Det N

The cat sat on the mat

Figure 6.3: A phrase structure tree for the sentence ‘The cat sat on the mat’, derived from
the grammar G1.

9. ⇒ 'The' 'cat' 'sat' 'on' NP

10. ⇒ 'The' 'cat' 'sat' 'on' Det N

11. ⇒ 'The' 'cat' 'sat' 'on' 'the' N

12. ⇒ 'The' 'cat' 'sat' 'on' 'the' 'mat'

This derivation confirms that the sentence is grammatical according to G1. More
importantly, this process directly maps to a hierarchical structure. Each time a rule like
A → B C is applied, we establish that B and C are the immediate constituents of A. The
entire derivation can be visualized as a phrase structure tree, or parse tree, as shown
in Fig. 6.3.

The tree in Fig. 6.3 provides an explicit, visual representation of the sentence’s syn-
tax. The root of the tree is the start symbol S. The internal nodes are the non-terminals
(NP, VP, PP), and the leaves are the terminals—the words of the sentence. The dia-
gram clearly shows that ‘The cat’ forms a Noun Phrase (the subject), while ‘sat on the
mat’ forms a complete Verb Phrase (the predicate). Within that VP, the tree reveals
further nested structure: ‘on the mat’ is its own constituent, a Prepositional Phrase. This
ability to capture the nested, hierarchical grouping of words is the fundamental power of
constituency grammars.

While a Context-Free Grammar provides a formal and powerful mechanism for describ-
ing sentence structure, it also immediately brings a crucial challenge of natural language to
the forefront: ambiguity. In many cases, a single sentence can be assigned more than one
valid parse tree according to the rules of a given grammar. This phenomenon is known as
structural ambiguity or syntactic ambiguity, and it is one of the most significant problems
that a computational parser must address. Unlike lexical ambiguity, where a word has
multiple meanings (e.g., ‘bank’ can be a financial institution or a river’s edge), structural
ambiguity arises from different ways of combining constituents.

A classic illustration of this problem is the sentence ‘I saw a man with a telescope.’
This sentence has at least two distinct interpretations, and each corresponds to a different
syntactic structure.

CHAPTER 6. SYNTACTIC PARSING 88

S

NP VP

Pro V NP

NP PP

Det N P NPPro

I

V

saw a man with Det N

a telescope

Low Attachment (PP modifies NP)

S

NP VP

Pro

VP PP

V NP P NP

Pro

I

V

saw

Det

a

N

man

P

with

Det

a

N

telescope

High Attachment (PP modifies VP)

Figure 6.4: Two parse trees for the sentence ‘I saw a man with a telescope’ illustrating
PP-attachment ambiguity. The left tree shows low attachment, where the prepositional
phrase (PP) ‘with a telescope’ modifies the noun phrase (NP) ‘a man’. The right tree
shows high attachment, where the PP modifies the verb phrase (VP) ‘saw a man’.

• Interpretation 1: The man I saw was holding a telescope.

• Interpretation 2: I used a telescope as an instrument to see the man.

These two meanings are not a result of any word having multiple definitions; they are
a direct consequence of how the prepositional phrase (PP) ‘with a telescope’ attaches to
the rest of the sentence. In the first interpretation, the PP modifies the noun phrase (NP)
‘a man’. The phrase ‘a man with a telescope’ acts as a single, large NP, which is the direct
object of the verb ‘saw’. This is often called low attachment because the PP attaches to a
constituent low in the parse tree. In the second interpretation, the PP modifies the verb
phrase (VP) ‘saw a man’. Here, the PP describes how the seeing action was performed.
This is known as high attachment, as the PP attaches to the main VP, higher up in the
tree. As illustrated in Fig. 6.4, these two interpretations correspond to two distinct and
equally valid parse trees that can be generated by a plausible English grammar.

This problem, known as PP-attachment ambiguity, is just one of several types of struc-
tural ambiguity that are pervasive in language. Other common forms include:

• Coordination Ambiguity: This occurs with conjunctions like ‘and’. For example,
in the phrase ‘young men and women’, does ‘young’ modify only ‘men’, resulting
in the structure [young men] and [women], or does it modify the entire coordi-
nated phrase, giving young [men and women]? The correct interpretation depends
entirely on context.

• Noun Compound Ambiguity: The structure of noun compounds can be am-
biguous. The phrase ‘student feedback system’ could mean a system for providing
feedback to students student [feedback system] or a system that processes feed-
back from students [student feedback] system.

The existence of structural ambiguity has profound implications. First, and most im-
portantly, it means that syntax and semantics are deeply intertwined; a different parse

CHAPTER 6. SYNTACTIC PARSING 89

tree leads directly to a different meaning. Any system aiming for genuine language under-
standing must have a strategy for disambiguation—choosing the most plausible structure
among the many possibilities. Second, the number of potential parse trees for a sentence
can grow exponentially with its length, a problem known as combinatorial explosion. A
single, moderately complex sentence can have hundreds or even thousands of valid parses.
This makes parsing a significant computational challenge. Consequently, a parser must
not only be able to find valid structures according to a grammar but must also do so
efficiently and have a principled way to select the most likely parse, a topic that motivates
the algorithms and probabilistic models we will explore next.

While a Context-Free Grammar provides the formal rules for generating a language,
it doesn’t specify how to find a valid parse for a given sentence. A naive approach might
try to recursively expand every possible rule from the start symbol, a method that would
quickly fail. Given the high degree of ambiguity in natural language, a brute-force search
through all possible derivations would face a combinatorial explosion, rendering it com-
putationally intractable for all but the most trivial sentences. To overcome this, we need
a more systematic and efficient method. The solution lies in dynamic programming, an
algorithmic paradigm that solves a complex problem by breaking it down into a collection
of simpler subproblems, solving each subproblem just once, and storing their solutions to
avoid redundant computation.

The Cocke-Younger-Kasami (CYK) algorithm is a classic example of dynamic pro-
gramming applied to parsing. It systematically fills a table, often called a chart, with the
set of non-terminals that can generate every possible substring of the input sentence. By
building up solutions for progressively longer substrings from the solutions for shorter sub-
strings it has already found, CYK can efficiently determine if a sentence can be generated
by a given grammar.

However, the standard CYK algorithm comes with a crucial prerequisite: the Context-
Free Grammar must be converted into Chomsky Normal Form (CNF). A grammar is
in CNF if all of its production rules take one of two simple forms:

1. A → BC (A non-terminal rewrites to exactly two non-terminals)

2. A → a (A non-terminal rewrites to a single terminal)

This strict binary-branching structure is the key that makes the CYK algorithm’s
dynamic programming approach work. The first rule type ensures that any constituent
spanning multiple words is always formed by combining exactly two smaller, adjacent con-
stituents. The second rule type, known as a lexical rule, grounds the parse by connecting
the non-terminal symbols of the grammar to the actual words (terminals) in the sentence.
While this may seem like a significant constraint, it has been proven that any context-free
grammar can be converted into an equivalent one in CNF, meaning the algorithm loses
no generative power.

The CYK algorithm operates on an n×n upper-triangular chart, let’s call it P , where
n is the number of words in the sentence. A cell P [i, j] in this chart (where 1 ≤ i ≤ j ≤ n)
will store the set of all non-terminals that can derive the substring of words from position
i to position j. The algorithm proceeds bottom-up in two main stages:

• Initialization (Spans of length 1): First, we fill the diagonal of the chart. For
each word wi in the sentence (from i = 1 to n), we look at all rules of the form
A → wi in our CNF grammar. For every such rule found, we add the non-terminal
A to the chart cell P [i, i]. After this step, the diagonal contains all possible phrasal
categories for each individual word.

CHAPTER 6. SYNTACTIC PARSING 90

• Main Loop (Spans of length > 1): Next, the algorithm iteratively fills the rest
of the chart, moving from shorter spans to longer ones. It iterates over the span
length, len, from 2 up to n. For each length, it iterates over all possible starting
positions, i, for a span of that length. The ending position j is simply i + len -
1. To fill the cell P [i, j], the algorithm must consider every possible way to split the
substring wi...wj into two smaller, contiguous substrings. Let’s call the split point
k, where k ranges from i to j-1. For each split, we have two sub-spans: wi...wk and
wk+1...wj . The algorithm then consults the chart cells that have already been filled
for these smaller spans, namely P [i, k] and P [k + 1, j]. If it finds any rule A → BC
in the grammar such that non-terminal B ∈ P [i, k] and non-terminal C ∈ P [k+1, j],
it adds non-terminal A to the cell P [i, j].

This process continues until the entire upper-triangular chart is filled. The final step
is to check the top-rightmost cell, P [1, n], which corresponds to the span of the entire
sentence. If the grammar’s start symbol (e.g., S) is present in P [1, n], the sentence is
recognized as being grammatically valid according to the grammar. If S is not in this cell,
the sentence cannot be generated by the grammar and the parse fails.

The time complexity of the CYK algorithm is O(n3 · |G|), where n is the length of
the sentence and |G| is the size of the grammar. The n3 factor comes from the three
nested loops: one for the span length, one for the start position, and one for the split
point. This cubic complexity is a vast improvement over the exponential complexity of
naive search methods, making parsing feasible for reasonably long sentences. While the
basic algorithm is a recognizer—it only tells you if a sentence is valid—it can be easily
extended to become a full parser. To do this, whenever a non-terminal is added to a cell,
we store back-pointers indicating which rule and which sub-cells were used to derive it.
After the chart is filled, we can trace these pointers back from the start symbol in the top
cell to reconstruct all possible valid parse trees.

To make the CYK algorithm concrete, let’s walk through the process of parsing the
sentence ‘she eats fish’. We will use a simple Context-Free Grammar already converted to
Chomsky Normal Form. Assume our grammar contains the following rules:

• Lexical Rules:

– PRP → ‘she’
– V → ‘eats’
– N → ‘fish’

• Structural Rules:

– S → NP V P

– NP → PRP

– NP → N

– V P → V NP

Our goal is to populate a parsing chart, often called a CYK chart or well-formed
substring table, to determine if the start symbol S can generate the entire sequence of
words. This chart, shown in Fig. 6.5, is an upper-triangular matrix where each cell P ⌋

[i, j] will store the set of non-terminals that can generate the substring of words from
position i to j. Let our words be indexed as w1, w2, w3.

Step 1: Initialization (Spans of Length 1)
We begin by filling the diagonal of the chart, which corresponds to spans of a single

word. We look for all lexical rules A → wk in our grammar.

CHAPTER 6. SYNTACTIC PARSING 91

j=1 (she) j=2 (eats) j=3 (fish)

i=1

i=2

i=3

{PRP, NP} {S}

{V} {VP}

{N, NP}

Figure 6.5: A completed CYK parsing chart for the sentence ‘she eats fish’. The chart
is an upper-triangular matrix where cell (i, j) contains the set of non-terminals that can
generate the substring from word i to word j. The presence of the start symbol ‘S’ in the
top-right cell (1, 3) confirms the sentence is grammatically valid according to the provided
grammar.

• Cell P[1, 1] for ‘she’ (w1): The rule PRP → ‘she’ applies. We add PRP to the
cell. We must also consider any unit productions that can be reached from PRP. The
rule NP → PRP allows us to add NP as well. So, P[1, 1] = {PRP, NP}.

• Cell P[2, 2] for ‘eats’ (w2): The rule V → ‘eats’ applies. There are no further
unit productions from V. So, P[2, 2] = {V}.

• Cell P[3, 3] for ‘fish’ (w3): The rule N → ‘fish’ applies. From N, the rule
NP → N allows us to add NP. So, P[3, 3] = {N, NP}.

After this step, the diagonal of our chart is filled, representing the possible grammatical
categories for each individual word.

Step 2: Filling the Chart (Spans of Length 2)
Now we move to spans of length two. For each cell P[i, j] where the span length j

- i + 1 is two, we look for all possible split points k. We check if any rule A → B C
exists where B ∈ P [i, k] and C ∈ P [k + 1, j].

• Cell P[1, 2] for ‘she eats’ (w1w2): The only possible split is at k = 1. We need
to find a rule A → B C where B ∈ P [1, 1] and C ∈ P [2, 2].

– We check combinations from P [1, 1] = {PRP,NP} and P [2, 2] = {V }.
– Is there a rule A → PRP V ? No.

– Is there a rule A → NP V ? No.

– Since no rules match, cell P[1, 2] remains empty.

• Cell P[2, 3] for ‘eats fish’ (w2w3): The only split is at k = 2. We need a rule
A → B C where B ∈ P [2, 2] = {V } and C ∈ P [3, 3] = {N,NP}.

CHAPTER 6. SYNTACTIC PARSING 92

– Is there a rule A → V N? No.

– Is there a rule A → V NP? Yes, V P → V NP .

– Therefore, we add VP to this cell. P[2, 3] = {VP}.

Step 3: Filling the Final Cell (Spans of Length 3)
Finally, we compute the entry for the top-right cell, P[1, 3], which covers the entire

sentence. The span length is three, so there are two possible split points: k = 1 and k = 2.

• Split 1 (k = 1): Check for rules A → B C where B ∈ P [1, 1] and C ∈ P [2, 3].

– P [1, 1] = {PRP,NP} and P [2, 3] = {V P}.
– We check for rules like A → PRP V P (no) and A → NP V P (yes, S →

NP V P).

– This split successfully finds the start symbol S. We add S to P[1, 3].

• Split 2 (k = 2): Check for rules A → B C where B ∈ P [1, 2] and C ∈ P [3, 3].

– Since P[1, 2] is empty, this split cannot produce any non-terminals.

The final content of the top cell is P[1, 3] = {S}. The completed chart is shown in
Fig. 6.5. Because the start symbol S is present in the cell corresponding to the entire
sentence (P[1, 3]), we conclude that ‘she eats fish’ is a valid sentence according to our
grammar. If S were not found in this cell, the sentence would be rejected as ungrammati-
cal. To reconstruct the actual parse tree, a practical implementation of CYK also stores
backpointers in each cell to remember which rule and which sub-constituents were used
to add each non-terminal.

Having established how constituency grammars model sentence structure through hier-
archical phrases, we now shift our focus to an alternative and equally influential paradigm:
dependency parsing. Rather than focusing on nested constituents, dependency parsing rep-
resents grammatical structure by identifying the relationships between individual words.
The core idea is that for any sentence, the syntactic structure consists of a set of directed,
binary, and asymmetrical links between words.

In this framework, every relationship connects a head (also called a governor) to a
dependent (or modifier). The head is the word that is grammatically dominant, while the
dependent is the word that modifies or is an argument of the head. For example, in the
phrase ‘big dogs’, the noun dogs is the head, and the adjective big is its dependent, as big
modifies dogs. These directed links, called dependencies, are typically labeled to specify
the exact nature of their grammatical function. These labels come from a standardized
set, such as the Universal Dependencies (UD) tagset, which includes common functions
like nsubj (nominal subject), obj (direct object), amod (adjectival modifier), and det
(determiner).

The complete dependency structure for a sentence is represented as a dependency tree
(or, more formally, a directed acyclic graph). To ensure that every word is connected and
the structure forms a single tree, a special pseudo-word, often labeled ROOT, is introduced.
The ROOT node acts as the head of the main predicate of the sentence, which is usually
the main verb. A well-formed dependency tree for a sentence with n words must satisfy
three key constraints:

1. The ROOT node has no incoming arcs (it has no head).

2. Every other word has exactly one incoming arc (it has exactly one head).

CHAPTER 6. SYNTACTIC PARSING 93

3. The graph is acyclic.

Together, these constraints ensure that the resulting structure is a tree where every
word in the sentence is ultimately a dependent of the ROOT node. This approach provides a
lexicalized representation of grammar, as the structure is built directly between the words
themselves, without the need for intermediate phrasal nodes like NP or VP.

Let’s return to our familiar example, ‘The cat sat on the mat,’ to see how a dependency
parser would analyze it. The resulting dependency tree would consist of the following set
of labeled arcs, represented here as (head, label, dependent) triples:

• (ROOT, root, sat): sat is the root of the sentence.

• (sat, nsubj, cat): cat is the nominal subject of sat.

• (cat, det, The): The is the determiner for cat.

• (sat, prep, on): on is a prepositional modifier of sat.

• (on, pobj, mat): mat is the object of the preposition on.

• (mat, det, the): the is the determiner for mat.

Notice how this structure differs from a constituency parse. There are no nodes for
‘the cat’ (NP) or ‘on the mat’ (PP). Instead, the relationships are direct: The modifies cat,
and cat is the subject of sat. This direct, word-to-word representation can be particularly
advantageous for languages with more flexible word order, where constituents may not be
contiguous. Furthermore, the dependency labels often map more directly to the semantic
roles that words play, making the output of a dependency parser a valuable input for
downstream tasks like information extraction and question answering.

The output of a dependency parser is a dependency graph (or dependency tree), a
structure that represents the grammatical relationships within a sentence. Unlike a con-
stituency tree that groups words into phrases, a dependency graph consists of directed,
labeled arcs connecting individual words. In this graph, words are the nodes, and the
grammatical relationships are the arcs. Each arc connects a head (the word that governs
the relationship) to a dependent (the word that modifies or is an argument of the head).
By convention, the arrow points from the head to the dependent.

To make this concrete, let’s analyze the sentence ‘She ate a green apple.’ The depen-
dency parse for this sentence is illustrated in Fig. 6.6. The structure is rooted in the main
verb of the sentence, ate. A special pseudo-node, ROOT, is typically used to mark the head
of the entire sentence, with an arc pointing to this main verb. From ate, arcs extend to
its arguments and modifiers.

Fig. 6.6 A dependency graph for the sentence ‘She ate a green apple’.
In the graph, we can observe the following key relationships:

• An arc from ate to She is labeled nsubj, indicating that ‘She’ is the nominal subject
of the verb ‘ate’. This tells us who performed the action.

• An arc from ate to apple is labeled dobj, identifying ‘apple’ as the direct object.
This tells us what was acted upon.

• The noun apple is itself a head. An arc from apple to green is labeled amod
(adjectival modifier), showing that ‘green’ describes the apple.

• Similarly, an arc from apple to a is labeled det (determiner), specifying the article
associated with the noun.

CHAPTER 6. SYNTACTIC PARSING 94

ROOT

She ate a green apple

root

nsubj

dobj

det

amod

Figure 6.6: A dependency graph for the sentence ‘She ate a green apple’, showing words
connected by labeled, directed arcs that represent grammatical relationships.

This representation explicitly captures the functional relationships between words.
The triplet nsubj(ate, She) and dobj(ate, apple) directly encodes the core predicate-
argument structure: who did what. This is a significant advantage of dependency grammar,
as it often makes extracting semantic information more straightforward than navigating a
complex phrase structure tree. The labels for these grammatical relations typically come
from a standardized set, such as the one defined by the Universal Dependencies (UD)
project, which aims to create consistent annotation schemes across different languages.
This standardization is crucial for building robust, multilingual parsing tools. The entire
structure forms a directed, acyclic graph where each word (except the root) has exactly
one head, ensuring a coherent grammatical analysis.

While graph-based methods attempt to find the highest-scoring dependency tree from
all possible trees for a sentence, an alternative and highly efficient approach is transition-
based parsing. Instead of scoring entire trees, a transition-based parser processes a
sentence word by word, making a sequence of locally optimal decisions to build the final
dependency graph. This method is often conceptualized as a state machine. It starts in
an initial configuration, and at each step, it applies a transition (or action) to move to a
new configuration, gradually constructing the dependency arcs. The process terminates
when the sentence is fully processed and a complete tree has been formed.

At the heart of a transition-based parser is its configuration, which typically consists
of three components:

• A stack (σ), which holds words that are currently being processed.

• A buffer (β), which holds the sequence of words from the sentence that have not
yet been processed.

• A set of dependency arcs (A), which is initially empty and is incrementally built by
the parser.

The parser is initialized in a standard starting configuration. The stack contains a
special ROOT token, representing the root of the dependency tree. The buffer contains all

CHAPTER 6. SYNTACTIC PARSING 95

the words of the sentence in their original order. The set of arcs is empty. The goal of
the parser is to reach a terminal configuration where the buffer is empty and the stack
contains only the ROOT token.

The parser moves from one configuration to another by applying one of a small set of
defined actions. The most common system, known as an arc-standard parser, uses three
primary actions:

1. SHIFT: This action removes the first word from the buffer and pushes it onto the
top of the stack. This is the primary way words are brought into consideration for
forming dependency relationships. It is used when no dependency can yet be formed
involving the word at the front of the buffer and the word on top of the stack.

2. LEFT-ARC (Ly): This action asserts a head-dependent relationship. Let the word
on top of the stack be wj and the second word from the top be wi. The LEFT-ARC
action creates a dependency arc wj → wi, with the label y. This means wj is the
head and wi is the dependent. After adding the arc to the set A, the dependent (wi,
the second word) is popped from the stack. This action is typically chosen when wi

has found its head and will not be the head for any other words remaining on the
stack or in the buffer.

3. RIGHT-ARC (Ry): This action also asserts a head-dependent relationship. As
before, let the word on top of the stack be wj and the second word from the top
be wi. The RIGHT-ARC action creates a dependency arc wi → wj , with the label
y. Here, wi is the head and wj is the dependent. After the arc is added to A, the
dependent (wj , the top word) is popped from the stack. This action is used when
the word on top of the stack has found its head and has already been assigned all
of its own dependents.

The critical question, of course, is how the parser decides which action to take at each
step. This decision is made by a component called an oracle. In modern transition-
based parsers, this oracle is a supervised machine learning classifier. At each step in the
parsing process, a feature vector is extracted from the parser’s current configuration. These
features might include the part-of-speech tags and word forms of the top few words on
the stack, the first few words in the buffer, and information about previously constructed
dependency arcs.

The classifier, which has been trained on a large treebank (a corpus of sentences anno-
tated with correct dependency trees), takes this feature vector as input and predicts the
most likely valid action (SHIFT, LEFT-ARC, or RIGHT-ARC) for that specific configu-
ration. The parser then executes this predicted action and moves to the next state. This
process repeats until a terminal state is reached.

The primary advantage of this approach is its efficiency. Since the parser makes a
single pass through the sentence, making a constant number of decisions for each word,
its computational complexity is linear in the length of the sentence, or O(n). This makes
transition-based parsers very fast and suitable for large-scale applications. However, their
greedy nature—making locally optimal decisions without the ability to backtrack—means
that an early mistake can lead to a cascade of subsequent errors, a problem known as error
propagation. Despite this, the combination of speed and high accuracy from powerful
machine learning oracles has made transition-based parsing a dominant and influential
paradigm in the field. To make these abstract components and actions concrete, the
next section will walk through a step-by-step example, illustrating how these pieces work
together to parse a simple sentence.

To understand how a transition-based parser operates, let’s walk through a concrete
example. We will parse the simple sentence ‘He ate fish.’ Our parser uses three data

CHAPTER 6. SYNTACTIC PARSING 96

Step Stack Buffer Action Taken Generated Arcs

0 [ROOT] [He, ate, fish] — {}
1 [ROOT, He] [ate, fish] shift {}
2 [ROOT, He, ate] [fish] shift {}
3 [ROOT, ate] [fish] left-arc(nsubj) {(ate, nsubj, He)}
4 [ROOT, ate, fish] [] shift {(ate, nsubj, He)}
5 [ROOT, ate] [] right-arc(dobj) {(ate, nsubj, He), (ate, dobj, fish)}
6 [ROOT] [] right-arc(root) {(ate, nsubj, He), (ate, dobj, fish), (ROOT, root, ate)}

Figure 6.7: A step-by-step trace of a transition-based parser operating on the sentence
‘He ate fish.’ The table shows the state of the stack, buffer, and generated dependency
arcs after each action.

structures: a stack, which holds words that are currently being processed; a buffer, which
holds the remaining words of the sentence; and a list of arcs, which will store the final
dependency relations we construct.

The parser begins in an initial configuration. The stack contains a special [ROOT]
symbol, which acts as a placeholder for the ultimate root of the sentence. The buffer
contains all the words of the sentence in order. The set of generated arcs is empty.

Initial State:

• Stack: [ROOT]

• Buffer: [He, ate, fish]

• Arcs: {}

The parser’s job is to sequentially apply one of three actions—SHIFT, LEFT-ARC, or
RIGHT-ARC—until it reaches a terminal state, which is defined as having an empty buffer
and a stack containing only the [ROOT] element. At each step, a model known as an oracle
decides which action is correct based on the current configuration. For this walkthrough,
we will act as the oracle, making decisions that lead to a grammatically correct parse.
The entire process is traced step-by-step in Fig. 6.7.

Step 1: The stack contains [ROOT] and the buffer starts with He. We cannot yet estab-
lish a relationship between ROOT and He, as we haven’t seen the main verb of the sentence.
Therefore, we must move a word from the buffer to the stack for further consideration.
The only valid action is SHIFT.

• Stack: [ROOT, He]

• Buffer: [ate, fish]

• Action: SHIFT

• Arcs: {}

Step 2: The top two items on the stack are ROOT and He. We still cannot relate them.
The main verb, ate, is still in the buffer. So, we SHIFT again.

• Stack: [ROOT, He, ate]

• Buffer: [fish]

• Action: SHIFT

• Arcs: {}

CHAPTER 6. SYNTACTIC PARSING 97

Step 3: Now, the stack is [ROOT, He, ate]. We can examine the top two words: He
and ate. A dependency exists between them: ate is the head of He (the verb is the head
of its subject). The arc is thus ate -> He. Since the head (ate) is to the right of the
dependent (He) on the stack, this calls for a LEFT-ARC action. We will label this arc with
the relation nsubj (nominal subject). This action adds the arc (ate, nsubj, He) to our
set and removes the dependent, He, from the stack.

• Stack: [ROOT, ate]

• Buffer: [fish]

• Action: LEFT-ARC(nsubj)

• Arcs: {(ate, nsubj, He)}

Step 4: The stack is now [ROOT, ate] and the buffer still contains fish. We cannot
create a dependency between ate and fish because fish is not yet on the stack. The
only possible action is to SHIFT.

• Stack: [ROOT, ate, fish]

• Buffer: []

• Action: SHIFT

• Arcs: {(ate, nsubj, He)}

Step 5: The buffer is now empty. We must process the remaining items on the stack.
The top two words are ate and fish. Here, ate is the head of fish (the verb is the
head of its direct object). The arc is ate -> fish. Because the head (ate) is to the left
of the dependent (fish), this is a RIGHT-ARC action. We label it with the relation dobj
(direct object). This action adds the arc (ate, dobj, fish) to our set and removes the
dependent, fish, from the stack.

• Stack: [ROOT, ate]

• Buffer: []

• Action: RIGHT-ARC(dobj)

• Arcs: {(ate, nsubj, He), (ate, dobj, fish)}

Step 6: We are nearly finished. The buffer is empty and the stack contains [ROOT,
ate]. The final dependency connects the special ROOT symbol to the main predicate of
the sentence, which is ate. The arc is ROOT -> ate. Since the head (ROOT) is to the left
of the dependent (ate), this is another RIGHT-ARC action. This final arc establishes ate
as the head of the entire sentence.

• Stack: [ROOT]

• Buffer: []

• Action: RIGHT-ARC(root)

• Arcs: {(ate, nsubj, He), (ate, dobj, fish), (ROOT, root, ate)}

CHAPTER 6. SYNTACTIC PARSING 98

The parser has now reached its terminal state: the buffer is empty and the stack
contains only [ROOT]. The set of arcs generated represents the final dependency graph for
the sentence ‘He ate fish.’

A crucial question remains: how does the parser decide which action to take at each
step? In our example, we used our own linguistic knowledge. A real transition-based
parser uses a machine learning classifier as its oracle. This classifier is trained on a large
treebank—a corpus of sentences that have been manually annotated with their correct
dependency structures. For each configuration in the training data, the oracle learns the
correct historical action.

During parsing, the oracle makes a prediction based on features of the current con-
figuration. These features might include the top words on the stack, the first words in
the buffer, their part-of-speech tags, and any existing dependency arcs. Based on these
features, the classifier predicts the most likely action (SHIFT, LEFT-ARC, or RIGHT-ARC) to
take next. The power of this approach lies in its ability to learn complex grammatical
patterns from data, rather than relying on hand-crafted rules. This data-driven method
makes transition-based parsers both highly accurate and computationally efficient, as they
build the syntactic structure in a single linear pass over the sentence.

In this chapter, we have journeyed through the foundational principles of syntactic
parsing, the task of uncovering the grammatical structure of a sentence. We explored
two primary paradigms for representing this structure. The first, constituency parsing,
views sentences as a hierarchy of nested phrases, or constituents, formally described by
Context-Free Grammars. This approach excels at identifying the phrasal units that group
together, such as noun phrases and verb phrases. The second, dependency parsing, models
grammatical relationships directly as a directed graph of dependencies between words,
linking heads to their dependents with specific functional labels like nsubj (nominal sub-
ject). This representation is often more useful for downstream tasks that need to know
‘who did what to whom.’

To operationalize these ideas, we examined classic algorithms that form the bedrock
of parsing theory. For constituency, we detailed the Cocke-Younger-Kasami (CYK) al-
gorithm, a dynamic programming method that systematically and exhaustively finds all
possible parses for a sentence according to a Chomsky Normal Form grammar. For de-
pendency parsing, we investigated transition-based systems, which offer a highly efficient,
linear-time approach by processing a sentence from left to right, making a series of local
decisions to build a dependency graph using a stack and a buffer. These methods provide
a crucial conceptual framework for thinking about syntactic structure computationally.

While these classic techniques are fundamental, the state of the art in syntactic parsing
has decisively shifted towards models based on neural networks. The primary advantage
of neural parsers lies in their ability to overcome the feature engineering and data sparsity
problems that plagued earlier statistical models. Instead of relying on hand-crafted, sparse,
symbolic features (e.g., ‘the current word is cat ’ and ‘the previous tag was DET ’), neu-
ral parsers learn dense vector representations—or embeddings—for words, part-of-speech
tags, and other contextual cues. These dense vectors capture rich semantic and syntactic
similarities, allowing the model to generalize far more effectively from the training data.

In a modern neural transition-based parser, for instance, the decision of which action
to take (SHIFT, LEFT-ARC, etc.) is made by a small neural network. This network takes
as input the vector embeddings of the words on top of the stack and in the front of the
buffer, and then outputs a probability distribution over the possible actions. This approach
replaces brittle feature templates with a powerful, learned decision-making function. A
different family of neural models, known as graph-based parsers, calculates a score for
every possible dependency arc between all words in the sentence and then finds the highest-
scoring tree structure.

CHAPTER 6. SYNTACTIC PARSING 99

More recently, large-scale architectures like the Transformer, which we will explore
in detail in Chapter 12, have further revolutionized the field. By using mechanisms like
self-attention, these models can capture complex, long-distance syntactic dependencies
with unprecedented accuracy. The fundamental concepts of constituency and dependency
remain as vital as ever, but the computational engine used to uncover these structures is
now overwhelmingly powered by the deep learning techniques that define modern compu-
tational linguistics.

Chapter 7

Lexical and Compositional Semantics

100

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 101

Our journey so far has equipped us with tools to analyze the structure of language.
We can identify parts of speech and map the grammatical architecture of a sentence
through parsing. Yet, structure is only half the story. A computer that can parse ‘The
rover is exploring Martian geology’ but cannot infer that a machine is on another planet
has not truly understood the text. This deeper level of comprehension is the domain
of semantics, the study of meaning in language. Semantics moves beyond the form of
language to investigate its content and communicative intent. It is the bridge between
linguistic expressions and the concepts, objects, and situations they represent in the world.

The distinction between syntax and semantics is fundamental. In Chapter 6, we fo-
cused on syntax, the set of rules that tells us how words can be legally combined to form
grammatically valid sentences. Semantics, in contrast, is concerned with what those com-
binations mean. The classic sentence ‘Colorless green ideas sleep furiously’ serves as a
perfect illustration. It adheres flawlessly to the rules of English grammar—it has a sub-
ject, verb, and adverb in the right places—making it syntactically impeccable. However,
it is semantically incoherent because the meanings of its constituent words clash. ‘Ideas’
cannot be ‘green,’ and they certainly cannot ‘sleep furiously.’ This stark contrast demon-
strates that a computational model must go beyond parsing grammatical trees to grapple
with the logic, truth, and real-world reference embedded in language.

In this chapter, we will dissect the problem of meaning into two core components.
We begin with lexical semantics, which focuses on the meaning of individual words, or
lexemes. How can we represent the meaning of words like ‘rover’, ‘planet’, or ‘explore’ in
a way a computer can process? We will explore both classic, knowledge-based approaches
and modern, data-driven methods that learn word meanings from vast text corpora. Sub-
sequently, we will tackle compositional semantics, which examines how these individual
word meanings combine systematically to create the meaning of phrases and sentences.
Understanding the meaning of ‘rover’ and ‘explore’ is one thing; understanding ‘the rover
explores’ as a complete proposition is another. This part of our exploration will intro-
duce foundational principles and computational techniques for building meaning from the
ground up, laying the groundwork for advanced applications like question answering and
information extraction.

To computationally model meaning, we must divide the problem into two intercon-
nected challenges, which form the central theme of this chapter. The first is lexical se-
mantics, which concerns the meaning of individual words or lexemes. This is the task of
representing what words like algorithm, analyze, or data signify in isolation. It involves
understanding relationships between words (e.g., that a poodle is a type of dog) and re-
solving ambiguity (e.g., distinguishing the river bank from the financial bank). Our initial
focus will be on methods that capture these individual word meanings, treating them as
the fundamental building blocks for any larger semantic analysis.

The second, more complex challenge is compositional semantics. This area explores
how the meanings of these building blocks combine, guided by syntax, to form the mean-
ings of phrases and sentences. Knowing the definitions of ‘the,’ ‘model,’ ‘predicts,’ and
‘outcome’ is essential but insufficient. We must also have a computational mechanism to
assemble them to understand the proposition conveyed by ‘The model predicts the out-
come,’ and to recognize that it means something different from ‘The outcome predicts the
model.’ The principle that the meaning of a complex expression is a function of the mean-
ings of its parts and the rules used to combine them is the cornerstone of compositional
semantics.

This fundamental division is visualized in Fig. 7.1. On one side, we have lexical se-
mantics, mapping individual words to their core concepts. On the other, compositional
semantics takes these concepts and, guided by the sentence’s grammatical structure, as-
sembles them into a coherent representation of the full sentence’s meaning. This chapter

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 102

Lexical Semantics

'dog' Conceptual Meaning
(CANINE)

'barks' Conceptual Meaning
(VOCALIZES)

Compositional Semantics

"The dog barks"

(CANINE) (VOCALIZES)+

Combined via Syntax

Complete Sentence Meaning

[A specific canine is vocalizing]

Figure 7.1: A two-panel diagram contrasting lexical and compositional semantics. The
left panel, labeled ‘Lexical Semantics,’ shows individual words (‘dog,’ ‘barks’) pointing to
their conceptual meanings. The right panel, ‘Compositional Semantics,’ shows how these
individual meanings combine within a sentence structure (‘The dog barks’) to produce a
complete sentence meaning.

follows this natural progression: we will first master techniques for representing word
meaning before turning to the methods used to combine them.

Our exploration of lexical semantics begins with the traditional approach: if we want
a computer to know what a word means, we can try to explicitly provide that knowledge.
This strategy relies on creating large, structured knowledge bases, often called lexical
resources, which are meticulously handcrafted by linguists and lexicographers. These
resources aim to capture the complex network of meanings that constitute a human lexicon,
encoding definitions and, more importantly, the relationships between words.

The most influential and widely used resource of this kind is WordNet1, a large lexical
database of English developed at Princeton University. WordNet is far more than a sim-
ple digital dictionary. While a dictionary is typically organized alphabetically, WordNet is
organized conceptually. It attempts to model how humans store and relate lexical knowl-
edge. Instead of treating words as isolated entries, it groups them into sets of synonyms
and connects them through a rich network of semantic relationships.

The fundamental idea is that a word’s meaning is not defined in a vacuum but by its
connections to other words. For example, knowing that a poodle is a type of dog, which is
a type of canine, which is a type of mammal, provides a deep, structured understanding
that a simple definition alone cannot. WordNet represents this knowledge as a large graph,
where concepts are the nodes and semantic relations are the edges. This allows a com-
putational system to traverse the graph, inferring relationships and measuring semantic
similarity between concepts.

The great strength of such knowledge-based approaches is the high quality and explicit
nature of the encoded information. However, they are enormously expensive and time-
consuming to create and maintain. They can also struggle to cover niche domains or
keep pace with the rapid evolution of language. This challenge sets the stage for the

1WordNet was created by a team led by psychologist George A. Miller and its development began in
1985.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 103

data-driven, distributional methods we will explore next.
To understand how a resource like WordNet represents meaning, we must look beyond

individual words and focus on its fundamental building blocks and the relationships be-
tween them. At its core, WordNet is not a dictionary of words but a network of concepts.
Its structure is built upon two key elements: synsets and the semantic relations that link
them.

The primary unit in WordNet is the synonym set, or synset. A synset is a group of
words or short phrases that are treated as semantically equivalent in a particular context;
they all represent the same underlying concept. For example, the words car, auto, auto-
mobile, machine, motorcar can be grouped into a single synset that represents the concept
of a four-wheeled passenger vehicle. Each synset is more than just a list of words; it also
contains:

• A specific part-of-speech (noun, verb, adjective, or adverb). The word back, for
instance, belongs to different synsets depending on whether it’s used as a noun (the
rear part of the body), an adverb (in the reverse direction), or a verb (to support).

• A gloss, which is a brief, dictionary-style definition of the concept. For our car
synset, the gloss might be ‘a motor vehicle with four wheels; usually propelled by
an internal combustion engine.’

• Example sentences that illustrate the usage of the synset’s members.

The real power of WordNet, however, emerges from the rich network of connections
between these synsets. These connections are not arbitrary; they represent well-defined
semantic relations that allow a machine to navigate the landscape of meaning. The most
important of these relations are:

• Hypernymy and Hyponymy: This is the foundational ‘is-a’ relationship that
organizes most nouns and verbs into a large, hierarchical structure. A concept Y is
a hypernym of a concept X if X is a type of Y. Conversely, X is a hyponym of
Y. For example, the synset motor vehicle is a hypernym of car, auto, ..., because
a car is a type of motor vehicle. This relationship is transitive: since a sedan is
a hyponym of car, auto, ..., it is also, by extension, a hyponym of motor vehicle.
Traversing these links allows a program to generalize (by moving up to hypernyms)
or specialize (by moving down to hyponyms).

• Meronymy and Holonymy: This relationship captures the ‘part-of’ or ‘has-a’
connection between concepts. A concept X is a meronym of Y if X is a part of Y.
Conversely, Y is the holonym of X. For instance, the synset wheel is a meronym
of car, auto, ..., because a wheel is a part of a car. Unlike the ‘is-a’ hierarchy, this
relation describes composition rather than classification. WordNet further divides
this into different kinds of part-whole relations, such as part_of (engine is a part of
a car), member_of (player is a member of a team), and substance_of (wood is the
substance of a table).

As illustrated in Fig. 7.2, these relationships form a complex, directed graph. The
synset car, auto, automobile appears as a node in this network. A directed edge labeled
is-a points from this node to its hypernym, motor vehicle, signifying its place in the clas-
sification hierarchy. Simultaneously, other edges, such as one labeled has-part, connect it
to its meronyms, like the synset wheel. By following these labeled edges, a computational
system can infer that a car is a vehicle and that it has wheels, all without understanding
the raw text of the definitions.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 104

{motor vehicle}

{car, auto, automobile} {truck}

{wheel}

is-a is-a

has-part

Figure 7.2: A network diagram illustrating semantic relations in WordNet, as described in
Fig. 7.4. Nodes represent synsets, such as car, auto, automobile and its hypernym motor
vehicle. Directed edges show the ‘is-a’ (hypernymy) relation from a concept to its more
general type and the ‘has-part’ (meronymy) relation from a whole to its component, such
as wheel.

WordNet also encodes other relations tailored to specific parts of speech. For adjec-
tives, a key relation is antonymy, which links synsets with opposite meanings (e.g., good
is an antonym of bad). For verbs, a crucial relation is entailment, where one verb logi-
cally implies another (e.g., the act of snoring entails the state of sleeping). This carefully
engineered structure, developed over many years at Princeton University, provides a for-
mal, machine-readable model of the human lexicon that has been an invaluable resource
for countless computational linguistics tasks.2

The true power of WordNet’s structure is realized when we traverse its graph computa-
tionally. By programmatically following the pointers that define relations like hyponymy
and meronymy, we can explore a word’s semantic neighborhood, quantify relationships
between concepts, and leverage this knowledge for downstream tasks. A common and
intuitive example is to trace the hypernym (‘is-a’) hierarchy for a given word.

Let’s illustrate this by finding the generalization path for the word car. We begin
by looking up the word in WordNet to find its corresponding synonym sets. The most
frequent sense of ‘car’ is represented by the synset car.n.01, which has the gloss: ‘a motor
vehicle with four wheels; usually propelled by an internal combustion engine’. This synset
serves as our starting node in the graph.

From car.n.01, we can iteratively follow the hypernym pointers to ascend the ‘is-a’ hi-
erarchy, moving to a more general concept at each step. The direct hypernym of car.n.01
is motor_vehicle.n.01. Following this chain upward reveals a path of increasing abstrac-
tion, as depicted in Fig. 7.3. The full traversal from the specific concept of a car to the
most general physical concept looks like this:

• car.n.01 −→ motor_vehicle.n.01

• −→ wheeled_vehicle.n.01
2Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,

38 (11), 39–41.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 105

entity

instrumentality

conveyance

vehicle

wheeled vehicle

motor vehicle

car

Figure 7.3: A hierarchical graph demonstrating the traversal of WordNet’s hypernym
hierarchy for ‘car’. Arrows point upwards, showing the ‘is-a’ relationship through a chain
of increasingly general concepts, from ‘car’ at the bottom to ‘entity’ at the top.

• −→ vehicle.n.01

• −→ conveyance.n.03

• −→ instrumentality.n.03

• −→ artifact.n.01

• −→ whole.n.02

• −→ object.n.01

• −→ physical_entity.n.01

• −→ entity.n.01

This ability to navigate the semantic hierarchy is invaluable. For instance, we can
compute a measure of semantic similarity between words by finding their lowest com-
mon ancestor in the hypernym tree. A ‘car’ and a ‘truck’ are semantically close because
their common ancestor, motor_vehicle, is very specific. This type of reasoning is funda-
mental for tasks like textual entailment and query expansion, where understanding these
hierarchical relationships allows a system to infer meaning beyond literal word matching.

While powerful, knowledge-based resources like WordNet have inherent limitations.
They are expensive and time-consuming to create, may not cover all words or specialized
domains, and struggle to adapt to the ever-evolving nature of language. To overcome these
challenges, modern computational linguistics has largely shifted to data-driven methods
for capturing meaning, all of which are built upon a foundational principle known as the
distributional hypothesis.

The core idea is captured perfectly by the linguist J.R. Firth’s famous dictum: ‘You
shall know a word by the company it keeps.’3 This hypothesis posits that the meaning

3Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 106

fishing

river

lure

caught

music

guitar

treble

band

bass

Figure 7.4: An illustration of the distributional hypothesis using the polysemous word
‘bass’. The central word is surrounded by two distinct clouds of contextual words. One
cloud, containing words like ‘fishing’, ‘river’, ‘lure’, and ‘caught’, indicates its meaning
as a type of fish. The other cloud, with words like ‘music’, ‘guitar’, ‘treble’, and ‘band’,
points to its meaning as a musical instrument.

of a word is not an intrinsic property but is defined by the contexts in which it typically
appears. Words that occur in similar contexts are assumed to have similar meanings. For
example, consider the words cat and dog. Both frequently appear alongside words like
pet, food, walk, play, and vet. This shared contextual environment suggests they occupy a
similar semantic space—in this case, the category of common household pets. We don’t
need a manually curated dictionary to tell us they are related; the pattern of their usage
in a large body of text reveals this relationship automatically.

This principle is particularly powerful for handling polysemy, where a single word has
multiple meanings. The surrounding words, or the distribution, provide the necessary clues
to disambiguate the intended sense. As illustrated in Fig. 7.4, the word bass can refer to a
type of fish or a musical instrument. If bass appears in a sentence with words like fishing,
river, lure, and caught, its context clearly points to the aquatic meaning. Conversely, if it
co-occurs with music, guitar, treble, and band, its meaning as a low-frequency instrument
is activated. The context doesn’t just suggest the meaning; in the distributional view, it
constitutes the meaning.

The profound implication of this hypothesis is that we can transform the abstract
concept of meaning into something computationally tractable. If a word’s meaning is
the set of all its contexts, we can represent that meaning by aggregating those contexts
statistically. This insight paves the way for representing words as numerical vectors, where
each dimension corresponds to some aspect of their contextual environment. Instead
of relying on a predefined graph of semantic relations, we can learn these relationships
directly from raw, unstructured text, forming the basis for the vector space models we will
explore next.

This principle is formalized through vector space models (VSM), a paradigm where
words are represented as points or vectors in a high-dimensional geometric space. The
fundamental idea is that a word’s meaning can be captured by a vector that summarizes its
distribution across different contexts. The relationships between words, such as similarity

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 107

king

queen
man

woman

Figure 7.5: A simplified 2D vector space model illustrating semantic relationships. Words
like ‘king’, ‘queen’, ‘man’, and ‘woman’ are plotted as points. The diagram shows that the
vector relationship (direction and distance) between ‘man’ and ‘woman’ is nearly identical
to the one between ‘king’ and ‘queen’, capturing the abstract concept of gender as a spatial
offset.

or analogy, can then be modeled as geometric relationships between their corresponding
vectors.

The most straightforward way to build such a model is by constructing a term-
context co-occurrence matrix. In this matrix, each row represents a target word
from our vocabulary, and each column represents a context word. A ‘context’ is typically
defined as a fixed-size window of words surrounding the target word. A cell at the inter-
section of a target word w and a context word c contains a count of how many times c
appeared within the context window of w across a large corpus.

Each row of this matrix is, therefore, a vector for a target word. For a vocabulary
of 50,000 words, the vector for the word ‘cat’ would have 50,000 dimensions, with each
dimension corresponding to a potential context word like ‘meow’, ‘pet’, or ‘kitchen’. These
raw count vectors are typically very sparse, as most words do not co-occur with most other
words.

Once we have these vectors, the core insight of the distributional hypothesis—that
words appearing in similar contexts have similar meanings—can be measured computa-
tionally. We can quantify the similarity between two word vectors, A and B, using a
distance metric. The most common is cosine similarity, which measures the cosine of
the angle between two vectors:

cos(θ) =
A ·B

∥A∥∥B∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

A cosine value near 1 indicates the vectors point in a very similar direction, implying
high semantic similarity, while a value near 0 indicates orthogonality, or dissimilarity. This
allows us to find the closest words to ‘dog’ by simply calculating its cosine similarity to
all other vectors in the space. As shown in the simplified two-dimensional projection in
Fig. 7.5, this spatial arrangement can capture remarkably nuanced relationships. Notice
how the vector from ‘man’ to ‘woman’ is very similar to the vector from ‘king’ to ‘queen’,

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 108

preserving the concept of gender as a direction in the space.
While co-occurrence vectors formalize the distributional hypothesis, they have signif-

icant practical limitations. A typical vocabulary can contain tens of thousands of words,
which means each vector is also tens of thousands of dimensions long. Furthermore,
most entries in these vectors are zero, a property known as sparsity. These sparse, high-
dimensional vectors are computationally inefficient and often fail to capture subtle seman-
tic relationships, as they only model direct, hard-count co-occurrences. They can tell you
that car appears near road, but they struggle to generalize that car is also similar to
automobile, which might appear in slightly different contexts.

To overcome these issues, we use word embeddings. An embedding is a learned,
dense, and relatively low-dimensional vector representation of a word. Instead of a vec-
tor with 50,000 dimensions where each dimension corresponds to a specific word in the
vocabulary, an embedding might have only 50 to 300 dimensions. These dimensions do
not have an obvious interpretation; instead, they represent latent semantic features that
are learned automatically from the data. The term dense means that most values in the
vector are non-zero, with each dimension contributing in some small way to defining the
word’s meaning.

The crucial insight behind modern embeddings is that we can learn these dense vectors
by training a simple neural network on an auxiliary prediction task. The goal isn’t to build
a state-of-the-art prediction model, but to use the task to force the model to learn good
word representations. For instance, the model might be tasked with predicting a word
given its surrounding context words. In the process of learning to make these predictions,
the network’s internal weights are adjusted. These learned weights, which represent each
word, become the word embeddings. This ‘learning’ process forces the model to distill the
essence of a word’s typical contexts into its fixed-size vector.

The power of this approach is that the resulting vector space encodes semantic sim-
ilarity as geometric proximity. Words that appear in similar contexts, such as boat and
ship, will be pushed towards having similar vectors, making them close to each other in
the space. Conversely, semantically distinct words like boat and apple will end up with
distant vectors. We can measure this distance formally using metrics like cosine similarity,
which calculates the cosine of the angle between two vectors:

similarity(u⃗, v⃗) = cos(θ) =
u⃗ · v⃗

∥u⃗∥∥v⃗∥
This remarkable property—encoding complex meaning in vector geometry—makes em-

beddings a foundational component of nearly all modern NLP systems. The following sec-
tions will detail two of the most influential algorithms for learning these representations:
Word2Vec and GloVe.

The Word2Vec model, introduced by Mikolov et al. at Google in 2013, provided a
highly efficient and scalable framework for learning such embeddings. Its key innova-
tion was to reframe the learning problem. Instead of directly counting co-occurrences,
Word2Vec trains a simple neural network on a proxy task: predicting a word from its
neighbors. The goal is not the task itself, but the learned weights of the network’s hidden
layer. These weights, once training is complete, become the dense vector representations
for each word in the vocabulary. Word2Vec proposes two distinct architectures for this
proxy task: the Continuous Bag-of-Words (CBOW) and Skip-gram.

The first architecture, Continuous Bag-of-Words (CBOW), works by predicting a tar-
get (center) word from its surrounding context words. For the sentence ‘the quick brown
fox jumps’, if ‘fox’ is our target word and we use a context window of two, the context
words would be ‘quick’, ‘brown’, ‘jumps’, and ‘over’ (if the next word was ‘over’). As
shown on the left side of Fig. 7.6, the CBOW model takes the embedding vectors for

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 109

CBOW
Predicts target from context

Target Word

w(t)

Projection

(Averaged Context)

Context Words

w(t-2) w(t-1) w(t+1) w(t+2)

Skip-gram
Predicts context from target

Context Words

w(t-2) w(t-1) w(t+1) w(t+2)

Projection

w(t)

Input Word

Figure 7.6: A side-by-side comparison of the Word2Vec architectures. On the left, the
Continuous Bag-of-Words (CBOW) model predicts a central target word from its sur-
rounding context words. On the right, the Skip-gram model does the reverse, using a
single input word to predict its context.

these context words, averages them to create a single context vector, and then uses this
vector to predict the target word, ‘fox’. The term ‘bag-of-words’ signifies that the order of
the context words is disregarded; their influence is combined through averaging. During
training, the model’s prediction is compared to the actual target word. The resulting error
is then backpropagated to adjust the embedding vectors of the context words, nudging
them to be better predictors of that specific target.

The Skip-gram model, depicted on the right of Fig. 7.6, reverses this logic. Instead of
predicting the center from the context, it uses a single input word to predict its surrounding
context words. Given the input word ‘fox’, the model attempts to predict ‘quick’, ‘brown’,
‘jumps’, and ‘over’. For each word in the training corpus, the Skip-gram model creates
multiple training examples: the input word is paired with each of its context words.
This means that for a single instance of ‘fox’, the model learns to predict its neighbors,
effectively generating more training data from the same amount of text compared to
CBOW. This makes Skip-gram slower to train but allows it to capture the semantics of
the input word more precisely, often resulting in higher-quality embeddings, especially for
infrequent words.

A naive implementation of either architecture would be computationally prohibitive.
The final layer of the network must produce a probability distribution over the entire
vocabulary, which can contain hundreds of thousands of words. Calculating the softmax
function over this large vector is a major bottleneck. To make training feasible, Word2Vec
introduces two key optimizations:

• Hierarchical Softmax: This technique replaces the flat softmax layer with a binary
tree structure, typically a Huffman tree built from word frequencies. Predicting a
word becomes a sequence of binary decisions navigating the tree from the root to
the target word’s leaf node. This reduces the computational complexity from being
proportional to the vocabulary size, $O(|V|)$, to being proportional to the logarithm
of the vocabulary size, $O(\log_2|V|).

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 110

• Negative Sampling: This is the more common and often more effective approach.
Instead of updating weights for the entire vocabulary, the model updates only a small
sample. For a given training instance (e.g., target: fox, context: jumps), the model is
trained to increase the probability of this ‘positive’ pair. Concurrently, it randomly
selects a few ‘negative’ samples—words that do not appear in the context (e.g.,
car, ocean, music). The model is then trained to decrease the probability of these
negative pairs. This transforms a complex multi-class classification problem into a
much simpler set of binary classification tasks, dramatically speeding up training.4

In practice, a choice must be made between the two architectures. CBOW is faster
and tends to perform better for frequent words, as the averaging of context vectors acts
as a form of regularization. Skip-gram, while slower, excels at learning representations
for rare words and is generally considered to produce more robust and higher-quality
embeddings overall, making it a popular choice for many applications. Through these
architectures and optimizations, Word2Vec provided the first truly practical method for
training high-quality, dense word embeddings on massive text corpora.

While the local context window approach of Word2Vec is powerful, another influential
model called GloVe, short for Global Vectors for Word Representation, argues that such
predictive models do not efficiently leverage the vast statistical information available in
the corpus. Instead of learning from individual, local context windows as they appear,
GloVe is a count-based model that first aggregates global co-occurrence statistics from the
entire corpus and then learns vectors that best explain these statistics.

The process begins by constructing a large co-occurrence matrix, X, from the corpus.
An entry in this matrix, Xij , represents the number of times word j appears in the context
of word i. This matrix is a direct, global statistical summary of the corpus. The core
insight behind GloVe is that the ratios of co-occurrence probabilities can encode meaning
more effectively than the raw probabilities themselves. For instance, consider the words
ice and steam.

• A probe word like solid is semantically related to ice but not steam. We would
expect the ratio P (solid|ice)/P (solid|steam) to be very large.

• A probe word like gas is related to steam but not ice. We would expect the ratio
P (gas|ice)/P (gas|steam) to be very small.

• A word like water, which is related to both, should have a ratio close to 1.0.

• An unrelated word like fashion should also have a ratio close to 1.0.

GloVe is designed to learn word vectors that capture these ratios as linear relationships
in the vector space. The model aims to learn two vectors for each word: a word vector
wi and a separate context vector w̃j . The training objective is to learn these vectors such
that their dot product models the logarithm of their co-occurrence count. More formally,
the model is trained on the following objective:

wT
i w̃j + bi + b̃j = log(Xij)

Here, bi and b̃j are bias terms for each word and context word, respectively. The model
is trained to minimize a weighted least-squares cost function that measures the difference
between the two sides of this equation for all word pairs in the vocabulary.

4The technique is a simplified variant of Noise Contrastive Estimation (NCE), which aims to train a
model to differentiate true data from noise.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 111

J =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − log(Xij))

2

The weighting function, f(Xij), is crucial. It serves two purposes: it prevents the
model from being dominated by extremely frequent co-occurrences (e.g., ‘the’ appearing
with ‘is’), which provide little semantic information, and it gives zero weight to pairs that
never co-occur (Xij = 0), making the computation tractable.

In essence, the fundamental distinction between the two models is this:

• Word2Vec is a predictive model. It iterates through the corpus and learns by
making local predictions (e.g., predicting a center word from its context). It captures
the global statistics implicitly.

• GloVe is a count-based model. It first pre-computes a global co-occurrence matrix
and then directly learns vectors that best explain this explicit statistical information.

This makes GloVe a hybrid method, combining the strengths of traditional count-
based matrix factorization methods (like Latent Semantic Analysis) with the local context
window methods of Word2Vec. In practice, both GloVe and Word2Vec produce high-
quality embeddings that excel at capturing semantic regularities, and the final vector for
each word is typically the sum of its word and context vectors (wi + w̃i).

One of the most remarkable and illustrative properties of dense word embeddings is
their ability to capture semantic relationships as consistent vector offsets. This goes be-
yond simply placing similar words near each other; it means the geometric arrangement of
words in the vector space encodes analogies. This allows us to use simple vector arithmetic
to perform a kind of conceptual algebra.

The classic case study that demonstrates this power is the analogy: ‘man is to king
as woman is to queen.’ A well-trained word embedding model learns this relationship not
as a rule, but as a geometric configuration. We can express this analogy through vector
arithmetic:

v⃗king − v⃗man + v⃗woman ≈ v⃗queen

When we perform this calculation, the word whose embedding is closest (typically
measured by cosine similarity) to the resulting vector is, indeed, queen. The intuition
behind this is that the difference vector, v⃗king − v⃗man, can be thought of as capturing the
abstract concept of royalty or monarchy. By adding this ‘royalty vector’ to the vector for
woman, we effectively navigate the semantic space to the location representing a female
monarch. The visual representation in Fig. 7.7 illustrates this process, showing how
starting at the ‘king’ vector, subtracting the ‘man’ vector, and then adding the ‘woman’
vector lands us in the immediate vicinity of the ‘queen’ vector.

This property is not a special case; it generalizes to many other types of relationships,
showcasing the rich structure learned by these models. Examples include:

• Country-Capital: v⃗Paris− v⃗France+ v⃗Germany results in a vector very close to v⃗Berlin.

• Verb Tense: v⃗walking − v⃗walk + v⃗swam results in a vector close to v⃗swimming.

• Company-Product: v⃗Microsoft− v⃗Windows+ v⃗Google points towards vectors for prod-
ucts like Android or Search.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 112

man

woman

king

queen

Figure 7.7: A 2D visualization of word vector arithmetic for the analogy ‘man is to king
as woman is to queen’. The parallel dashed arrows represent the constant vector offset
corresponding to the concept of ‘royalty’. This geometric arrangement demonstrates how
the relationship v(king) - v(man) ≈ v(queen) - v(woman) is captured in the vector space.

These analogy-solving capabilities provided early, compelling evidence that distribu-
tional models do more than just count co-occurrences. They learn a high-dimensional
semantic space where the directions and distances between words are meaningful. This
latent structure is what gives word embeddings their power and makes them such a suc-
cessful foundational component for more complex natural language understanding tasks.
The ability to capture relational meaning was a significant leap beyond the capabilities of
earlier sparse, knowledge-based representations.

Having explored how to represent the meaning of individual words, we now turn to a
fundamental question: how do these individual meanings combine to create the meaning
of phrases and sentences? We rarely communicate in isolated words; we combine them into
complex structures to express complex ideas. This is the central concern of compositional
semantics.

The guiding principle in this field is the Principle of Compositionality, a concept
most often attributed to the German logician and philosopher Gottlob Frege.5 The prin-
ciple states that the meaning of a complex expression is a function of the meanings of
its parts and of the syntactic rules by which they are combined. This idea is powerfully
intuitive. We understand the sentence ‘The student read the book’ because we know the
meanings of student, read, and book, and we understand how the English grammatical
structure assigns roles to each of them. If we change the structure to ‘The book read the
student,’ the sentence becomes nonsensical, even though the component words and their
lexical meanings remain identical. The rules of combination are just as important as the
meanings of the parts.

We can formalize this principle abstractly. If an expression E is composed of two parts,
α and β, its meaning M(E) can be expressed as a function of the meanings of its parts:

5While the principle is widely known as ‘Frege’s Principle,’ its explicit formulation in his work is a
subject of scholarly debate. Regardless of attribution, it remains the foundational assumption of most
formal and computational semantics.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 113

v_The

The

v_cat

cat

v_sat

sat

NP: 'The cat'

(average)

S: 'The cat sat'

(average)

Figure 7.8: A diagram of compositional semantics using vector averaging. The vectors
for ‘The’ and ‘cat’ are averaged to form a noun phrase (NP) vector. This is subsequently
averaged with the vector for ‘sat’ to create a single vector for the entire sentence (S).

M(E) = fcompose(M(α),M(β))

Here, fcompose is the composition function that is guided by the syntactic structure
combining α and β. The central challenge for computational semantics is defining this
function. Now that we have powerful vector representations for lexical meaning (i.e., word
embeddings), the question becomes: what is the right fcompose for combining word vectors
into phrase or sentence vectors? How do we computationally model the way meaning is
constructed? The following sections will explore several approaches to this very problem.

Having established a method for representing individual word meanings as vectors, we
now turn to the challenge of compositional semantics. How do we combine these word
vectors to create meaningful representations for multi-word expressions like phrases and
sentences? Frege’s principle suggests we need rules for combining the meanings of the
parts. The most direct computational approach is to apply simple vector arithmetic.

Two common baseline methods for composing a sequence of word vectors v⃗w1 , v⃗w2 , . . . , v⃗wn

into a single phrase vector v⃗phrase are element-wise addition and averaging.

• Vector Sum: The phrase vector is the sum of its constituent word vectors.

v⃗phrase =

n∑
i=1

v⃗wi

• Vector Average: The phrase vector is the average of its constituent word vectors.

v⃗phrase =
1

n

n∑
i=1

v⃗wi

These methods are intuitive and computationally inexpensive. For example, as illus-
trated in Fig. 7.8, we could compute a vector for the noun phrase ‘The cat’ by averaging
the vectors for The and cat. This new phrase vector could then be combined, perhaps

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 114

again through averaging, with the vector for sat to produce a single vector representing
the entire sentence. This technique effectively creates a ‘bag of vectors,’ where the final
representation is an amalgamation of all word meanings in the phrase, disregarding their
structural relationships.

Despite their simplicity, these additive and averaging methods have severe limitations.
Most critically, they are insensitive to word order. Because vector addition is commutative,
the phrase ‘the student taught the professor’ would yield the exact same vector representa-
tion as ‘the professor taught the student,’ even though their meanings are entirely different.
The compositional operation fails to capture the crucial syntactic structure that assigns
the roles of teacher and learner. Similarly, the sentence ‘The cat is not on the mat’ would
likely produce a vector very similar to ‘The cat is on the mat,’ as the vector for not is
simply averaged in with the others, failing to properly negate the proposition. These sim-
ple operations cannot adequately model the complex semantic impact of syntax, function
words, and logical operators. While useful for tasks where word order is less critical (like
document classification), they are insufficient for capturing the nuanced meaning required
for true sentence understanding, motivating the need for more structured approaches.

While simple compositional techniques like vector addition can capture the general
topic of a phrase, they are fundamentally limited. The meaning of a sentence like ‘The
cat chased the mouse’ is not merely the sum of its parts; it is a structured event with
distinct participants playing specific roles. Averaging the vectors for cat, chased, and
mouse would give us a representation in the semantic neighborhood of felines, rodents,
and pursuit, but it critically fails to preserve the information of who did the chasing and
who was chased. To capture this vital relational information, we need a more sophisticated
model of sentence-level semantics.

This brings us to the task of Semantic Role Labeling (SRL), a process that aims
to uncover the underlying predicate-argument structure of a sentence. Often described
as determining ‘who did what to whom, where, when, and how,’ SRL provides a shallow
semantic representation of events. The core idea is to identify the main predicate of a
sentence—typically a verb—and then identify and label the phrases (arguments) that fill
the semantic roles associated with that predicate. This moves beyond simple co-occurrence
to model the explicit relationships between participants in an event.

Consider the sentence: ‘The startup will launch its innovative new app in Singapore
next quarter.’ An SRL system would first identify the predicate, which is the event-
denoting word launch. It would then identify and label the arguments associated with
this predicate’s frame of meaning:

• Agent (The doer): The startup

• Theme (The thing being acted upon): its innovative new app

• Location (Where the event happens): in Singapore

• Time (When the event happens): next quarter

By identifying these roles, SRL extracts a structured representation of the sentence’s
meaning: LAUNCH(Agent: The startup, Theme: its innovative new app, Location:
in Singapore, Time: next quarter). This structured output is far more useful for
downstream tasks like question answering or information extraction than a single sen-
tence vector.

It is crucial to distinguish semantic roles from syntactic roles. Syntactic parsing iden-
tifies grammatical functions like subject and direct object, which are tied to the sentence’s
structure. Semantic roles, in contrast, are tied to the underlying meaning. For example,
consider these two sentences:

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 115

Role Description Annotated Example

Agent The entity that willfully instigates
or performs the action.

[The chef]AGENT cooked the meal.

Patient / Theme The entity affected by the action or
that undergoes a change of state.

The chef cooked [the meal]PATIENT.

Instrument The means or tool used to perform
the action.

He sliced bread [with a knife] INSTRUMENT.

Recipient The entity that receives something
as a result of the action.

She gave the book to [her friend]RECIPIENT.

Location The spatial setting where the action
occurs.

They met [in the park]LOCATION.

Source The origin or starting point of a mo-
tion or transfer.

He walked [from the library]SOURCE.

Goal The endpoint or destination of a mo-
tion or transfer.

He walked to [the station]GOAL.

Figure 7.9: A summary of fundamental semantic roles common to frameworks like Prop-
Bank and FrameNet, with descriptions and examples.

1. *[The researcher]Subject published _[the paper]Object.

2. *[The paper]Subject was published by _[the researcher]Object of Preposition.

Syntactically, the subject of sentence (1) is ‘The researcher,’ while the subject of
sentence (2) is ‘The paper.’ However, in terms of meaning, ‘The researcher’ is the Agent
(the one doing the publishing) in both sentences, and ‘the paper’ is the Patient or Theme
(the thing being published). SRL abstracts away from these syntactic variations to produce
a consistent semantic representation, capturing the fact that both sentences describe the
very same event. This ability to normalize meaning across different surface forms makes
SRL a powerful tool for computational language understanding. The next section will
explore the lexical resources that formally define these roles.

To formalize the predicate-argument structure identified by Semantic Role Labeling,
we require a standardized inventory of roles. A system cannot simply invent labels like
‘doer’ or ‘thing being done’ on the fly; it needs a consistent lexicon to describe the part
each constituent plays in the event. Two major resources, PropBank and FrameNet,
provide comprehensive frameworks for defining and annotating these roles, albeit with
different philosophical approaches. Fig. 7.9 provides a summary of several fundamental
roles common to these frameworks, offering a quick reference for the concepts discussed
here.

The Proposition Bank, or PropBank, takes a verb-centric approach. It develops a
specific set of roles for each individual verb, meaning the definition of a role is tied to the
verb that introduces it. However, PropBank maintains consistency by defining general,
numbered ‘arguments’ whose semantic meaning is broadly similar across verbs. The core
roles are:

• Arg0: Typically the Agent or ‘doer’ of the action. This corresponds to the Proto-
Agent, the entity that instigates or controls the event.

• Arg1: Typically the Patient or ‘theme’ of the action. This corresponds to the
Proto-Patient, the entity that is affected by the event or undergoes a change of
state.

• Arg2, Arg3, ...: These higher-numbered arguments represent other essential par-
ticipants whose meanings are highly specific to the verb. For the verb give, Arg2
would be the recipient. For move, it might be the destination.

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 116

Consider the verb to eat :
[The students]Arg0 ate [the pizza]Arg1 [in the cafeteria]ArgM-LOC.
Here, the students are the eaters (Arg0) and the pizza is the thing eaten (Arg1).

PropBank also includes a set of general-purpose modifier arguments, prefixed with ArgM,
that capture circumstantial information not essential to the core verb meaning. Common
modifiers include ArgM-LOC for location, ArgM-TMP for time, ArgM-MNR for
manner, and ArgM-DIR for direction. These modifiers can be attached to nearly any
verb’s argument structure.

An alternative, more semantically-driven resource is FrameNet. Instead of focusing on
individual verbs, FrameNet is organized around semantic frames, which are schematic
representations of situations or events (e.g., a commercial transaction, a journey, a con-
flict). Each frame defines a set of Frame Elements (FEs), which are the semantic roles
specific to that conceptual scenario. A key insight of FrameNet is that multiple verbs,
nouns, or adjectives can evoke the same frame.

For example, the COMMERCE_BUY frame describes a situation involving a commercial
transaction. Its core Frame Elements include the Buyer, the Seller, the Goods, and the
Money. This single frame can be evoked by various words:

The customer Buyer bought [a new laptop]Goods from [the store]Seller.

The store Seller sold [a new laptop]Goods to [the customer]Buyer.

1. The price of [the new laptop]Goods was [$1200]Money.

Notice how FrameNet captures the same underlying semantic event even when the
syntactic structure and triggering words change dramatically. In the first two sentences,
the Buyer and Seller switch between being the subject and an object of a prepositional
phrase, but their semantic roles within the transaction frame remain constant. This ab-
straction from syntax to a deeper semantic level is FrameNet’s primary strength.

In practice, PropBank’s verb-centric, generalized roles provide broader coverage and
are often simpler to annotate, making it a highly practical resource for building robust SRL
systems. FrameNet offers a more fine-grained and semantically nuanced representation,
which can be more powerful for deep understanding tasks, but its complexity means it
may not cover as wide a range of linguistic phenomena. By converting a sentence from
a linear string of words into a structured representation like this—a predicate with its
labeled arguments—we equip a machine to begin reasoning about the events described in
the text, a crucial step towards true language understanding.

To see the power of Semantic Role Labeling (SRL) in action, let’s consider a practical
case study: building a system to automatically extract information about corporate ac-
quisitions from financial news. The goal is to move beyond simple keyword searches and
create a structured database of these events that can answer sophisticated questions.

Imagine our system processes the following sentence from a news wire:
Innovate Corp, the cloud-computing giant, finalized its acquisition of the AI startup

Synapse Dynamics for $2.5 billion on Tuesday.
A traditional information retrieval system might identify keywords like ‘Innovate Corp’,

‘acquisition’, and ‘Synapse Dynamics’. However, it would struggle to understand the
precise relationship between them. Was Innovate Corp acquired? Did the deal fail? How
much was it worth?

This is where an SRL system provides a much deeper level of understanding. By
focusing on the predicate—the action word finalize (or its underlying verb acquire)—
the system identifies and labels the semantic roles of the surrounding phrases. The output
would look something like this:

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 117

• Predicate: finalize (within the event frame of Acquisition)

• Agent (the entity performing the action): Innovate Corp, the cloud-computing
giant

• Theme (the entity being acted upon): its acquisition of the AI startup Synapse
Dynamics

• ARG-Value (the price or value): for $2.5 billion

• ARG-Temporal (the time of the action): on Tuesday

This structured output is far more valuable than a list of keywords. The linguistic
analysis can be directly mapped into a structured format, like a database record or a
JSON object, that represents the core event:

{
"event_type " : "ACQUISITION" ,
" a cqu i r e r " : " Innovate Corp " ,
" acqu i red_ent i ty " : "Synapse Dynamics " ,
" va lue " : 2500000000 ,
" currency " : "USD" ,
"date " : "Tuesday"

}

By processing thousands of such articles, we transform a chaotic stream of unstructured
text into a structured knowledge base. This enables an advanced question-answering
capability that would be impossible with keyword matching alone. We can now ask precise
questions and get reliable answers:

• ‘Who acquired Synapse Dynamics?’

– The system queries for the acquirer field where acquired_entity is ‘Synapse
Dynamics’.

• ‘List all acquisitions with a value greater than $1 billion.’

– The system filters all records where the value field is greater than 1,000,000,000.

• ‘What companies did Innovate Corp acquire?’

– The system retrieves all acquired_entity values from records where acquirer
is ‘Innovate Corp’.

Crucially, SRL distinguishes roles. If another article stated, ‘Synapse Dynamics re-
jected an acquisition offer from Innovate Corp,’ the system would correctly identify ‘In-
novate Corp’ as the Agent of the ‘offer’ but would not log a completed acquisition. This
case study demonstrates how SRL serves as a critical bridge from raw text to actionable
knowledge, enabling applications to understand not just what a text is about, but who did
what to whom, when, and for how much.

This chapter has navigated the fundamental challenge of representing meaning com-
putationally, charting a course from individual words to the structure of simple sentences.
We contrasted two major paradigms: the symbolic, knowledge-based approach of lexical
resources like WordNet, and the statistical, data-driven approach of distributional seman-
tics. The shift from meticulously handcrafted semantic networks to learning dense vector
representations like Word2Vec and GloVe directly from text marks a pivotal development

CHAPTER 7. LEXICAL AND COMPOSITIONAL SEMANTICS 118

in computational linguistics, allowing models to capture subtle semantic relationships from
raw data.

However, these representations are not an end goal. Whether we are using word
embeddings to measure semantic similarity or Semantic Role Labeling to identify ‘who did
what to whom,’ we are building foundational components. A robust model of semantics is
the bedrock upon which more sophisticated language understanding is built. The ability
to analyze discourse, translate between languages, or extract structured information—all
topics we will soon explore—depends critically on the techniques for representing meaning
that we have established in this chapter.

Chapter 8

Discourse, Coreference, and Dialogue

119

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 120

Thus far, our journey has focused primarily on the sentence as the fundamental unit
of analysis. We have learned to model its internal structure through parsing and represent
its meaning through compositional semantics. These are powerful tools, but they operate
under a significant limitation: human language rarely consists of isolated, self-contained
sentences. We communicate through extended narratives, interactive dialogues, and struc-
tured documents where each sentence is part of a larger, interconnected whole. To build
systems that truly comprehend language, we must move beyond the sentence boundary
and analyze the web of connections that link utterances together.

Consider the challenges posed by a simple text snippet: ‘Maria trained for months.
Her dedication was inspiring. In the end, she won it.’ Analyzing the final sentence alone,
a syntactic parser can identify its structure, and a semantic model might understand the
concept of ‘winning.’ Yet, fundamental questions remain unanswered:

• Who is she? (Maria)

• What is it that she won? (Presumably, a competition mentioned earlier)

• How does this sentence logically follow from the previous ones? (It is the culmination
of her training and dedication)

Answering these questions is impossible without considering the broader context, or
discourse. The meaning is not just in the sentences, but between them. This chapter
is dedicated to the computational modeling of this larger context. We will explore the
principles that make a text a coherent whole, tackle the task of coreference resolution to
link pronouns like ‘she’ to their antecedents, and investigate the structure of dialogue.
By understanding these mechanisms, we can build applications that don’t just process
sentences, but comprehend stories and conversations.

To truly understand language, we must look beyond the boundaries of individual
sentences. The meaning of an utterance is rarely self-contained; it is deeply shaped by the
surrounding text and the context in which it is used. Two linguistic fields are dedicated
to studying this phenomenon: pragmatics and discourse analysis.

Pragmatics is the study of how context influences the interpretation of meaning. It
focuses on the gap between what is literally said (locution) and what is actually meant (il-
locution). Consider the statement, ‘It’s cold in here.’ While the literal meaning is a simple
observation about the temperature, the pragmatic meaning might be an indirect request
to close a window or turn up the heat. Pragmatics deals with this kind of implicature,
where a speaker’s intention must be inferred. For a computer, this is a profound chal-
lenge. It requires modeling the speaker’s goals, the listener’s beliefs, and a vast repository
of shared world knowledge—information that is almost never present in the text itself.

Discourse analysis, on the other hand, is concerned with the structure of language
beyond the sentence. It examines how sentences are linked together to form coherent and
meaningful texts, whether they are conversations, articles, or stories. While syntax, which
we explored in Chapter 6, provides the rules for well-formed sentences, discourse analysis
provides the principles for well-formed texts. It seeks to answer questions such as:

• How do sentences connect to one another to create a logical flow?

• What makes a paragraph a unified whole, rather than a random list of sentences?

• How are topics introduced, developed, and shifted over the course of a text?

For instance, in the sequence ‘Maria arrived late. She had missed the bus,’ we ef-
fortlessly infer a causal relationship. Discourse analysis aims to formalize these implicit
connections that bind a text together.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 121

While distinct, the two fields are closely related and often overlap. Pragmatics often
examines the inferential work needed in specific conversational turns, whereas discourse
analysis tends to focus on the larger structural properties of a complete text. Both are
indispensable for building systems that can comprehend narratives, summarize documents,
or engage in meaningful dialogue, as they provide the theoretical tools to model meaning
in context.

Consider the following two sequences of sentences:
Sequence A: The cat sat on the mat. It was a fluffy Persian. It began to purr loudly.

Sequence B: The cat sat on the mat. The sky is blue. Jupiter is the largest planet in our
solar system.

Both sequences are composed of grammatically correct English sentences. Yet, you
intuitively recognize Sequence A as a proper text and Sequence B as a random list. The
crucial property that Sequence A possesses and Sequence B lacks is discourse coherence.
Coherence is the quality that makes a sequence of sentences a unified, meaningful whole.
It is the underlying logical and semantic connectedness that allows us to interpret a text as
a single unit of communication, whether it’s a story, an argument, or a set of instructions.
Without coherence, we have only a jumble of disconnected propositions.

It is useful to distinguish coherence from a related concept, cohesion. Cohesion refers
to the explicit linguistic devices—the ‘glue’—that create surface-level links between sen-
tences. These include:

• Pronouns: Using ‘it’ to refer back to ‘the cat.’

• Conjunctions: Words like ‘and,’ ‘but,’ and ‘so’ that signal relationships.

• Lexical repetition: Repeating key words or using synonyms.

Sequence A uses cohesion (the pronoun ‘it’). However, a text can be coherent with
minimal cohesive markers. For example: ‘The power went out. The room was plunged
into darkness.’ No explicit conjunction links these sentences, but the causal relationship
is immediately clear to a human reader, making the text coherent. Cohesion, therefore,
is one tool for achieving coherence, but coherence itself is a deeper property of meaning
and logical flow. It relies on our real-world knowledge, our expectations about how events
unfold, and our ability to infer relationships that are not explicitly stated.

From a computational perspective, understanding and generating coherent text is a
fundamental challenge. For language understanding tasks like question answering or text
summarization, a model must grasp the implicit relationships between sentences to build
a complete representation of the text’s meaning. For language generation tasks, such as
creating summaries or chatbot responses, the system must produce not just grammatically
correct sentences, but sentences that follow one another in a logical and natural way.
Simply stringing together high-probability sentences often leads to the kind of nonsensical
output seen in Sequence B. To build systems that can truly process language, we need
ways to model the structure of coherent discourse, moving beyond individual sentences to
the relationships that bind them together.

To explain how texts achieve coherence, researchers have developed formal frameworks
to model their internal structure. One of the most influential is Rhetorical Structure
Theory (RST), developed by William Mann and Sandra Thompson. RST is not just a
theory of discourse; it provides a detailed analytical method for describing the relations
between different parts of a text. The core premise of RST is that a coherent text can be
described by a hierarchical tree structure, where every part of the text serves a specific
rhetorical purpose in relation to another part.

RST analysis begins by breaking a text down into its minimal, non-overlapping spans,
called Elementary Discourse Units (EDUs). An EDU typically corresponds to a single

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 122

clause. These EDUs form the leaves of the RST tree. The magic happens in how these
leaves are connected. Adjacent spans of text—either individual EDUs or larger, previously
combined spans—are linked by rhetorical relations. These relations describe the func-
tional connection between them. There are dozens of defined relations, each capturing a
specific type of connection. Some common examples include:

• Elaboration: One span provides more detail, a definition, or an example related to
the other.

• Cause / Result: One span describes a situation that caused the situation in the
other.

• Evidence: One span provides information intended to increase the reader’s belief
in the other.

• Contrast: The two spans present information that is seen as being in contrast.

• Justification: One span provides a reason for an action or belief presented in the
other.

• Background: One span provides context or background information for the other.

A crucial aspect of RST is the asymmetry of most relations. Each relation connects
a nucleus and a satellite. The nucleus is the more central and essential part of the text,
while the satellite is supplementary, providing supporting information. A simple test is
to imagine deleting one of the spans; if the text can still function without the satellite, but
not without the nucleus, the distinction is clear. For instance, in an Evidence relation,
the claim being made is the nucleus, and the information supporting it is the satellite.
While most relations are monosatellite, some, like Contrast or Sequence, are multi-nuclear,
connecting two or more spans of equal importance.

These components combine recursively to form a complete tree structure that spans
the entire text. This process is illustrated in Fig. 8.1. At the bottom of the diagram,
we see the individual EDUs extracted from the paragraph. Moving up the tree, pairs of
spans are joined by a rhetorical relation. For example, one EDU might act as the satellite
in an Elaboration relation, providing more detail for its neighboring nucleus. This newly
formed, larger span then acts as a single unit—perhaps as a nucleus in a Cause relation
with another span. This continues until the entire text is unified under a single root node,
representing the primary rhetorical purpose of the whole passage.

A text is considered coherent under RST if such a comprehensive tree can be con-
structed. The tree itself is an explicit model of the text’s coherence, demonstrating pre-
cisely how each clause contributes to the overall message. The automatic creation of these
trees, known as RST parsing, is a complex but valuable computational task. Models that
can identify these deep rhetorical structures can perform more sophisticated text under-
standing, enabling applications like automated text summarization (by prioritizing the
extraction of key nuclei), more coherent text generation, and advanced argumentation
mining.

To make the abstract concept of coherence concrete, let’s contrast two short texts.
Consider the following paragraph:

Maria woke up feeling anxious. The final exam was only a few hours away. She had
studied for weeks, but the material on syntactic parsing was particularly difficult. Taking
a deep breath, she decided to review her notes on the CYK algorithm one last time.

This text is coherent. Each sentence logically follows from the one before it, creating a
unified narrative. The first sentence establishes the main entity (Maria) and her emotional
state (anxious). The following sentences provide the cause for this state (the exam), an

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 123

Elaboration

N S

Cause

N S

Contrast

N N

[1] I love sunny days. [2] They make me happy. [3] However, I stay inside.[4] I get sunburned easily.

Figure 8.1: A diagram illustrating the hierarchical structure of a text according to Rhetor-
ical Structure Theory (RST), referred to as Fig. 8.4. The analysis breaks the text into El-
ementary Discourse Units (EDUs) at the leaf nodes. These units are recursively combined
into larger spans through rhetorical relations like ‘Elaboration’, ‘Cause’, and ‘Contrast’.
Each relation connects a central Nucleus (N) with a supplementary Satellite (S), or in the
case of ‘Contrast’, multiple Nuclei.

elaboration on the cause (the difficult material), and a resulting action (reviewing her
notes). The sentences are linked by a consistent topic, causal relationships, and the flow
of time. They work together to build a single, understandable situation.

Now, consider this second text, composed of individually sound sentences:
Maria woke up feeling anxious. The capital of Peru is Lima. Most modern cars use

internal combustion engines. Taking a deep breath, she decided to review her notes on the
CYK algorithm one last time.

This text is incoherent. While each sentence is grammatically correct, there is no logical
connection or shared context linking them. The mention of Peru’s capital and car engines
is entirely unrelated to Maria’s anxiety or her study plans. The final sentence abruptly
returns to the topic of the first, but the intervening sentences have broken any narrative
or logical thread. There are no clear discourse relations—no cause, elaboration, or logical
progression—between consecutive sentences. This example highlights that coherence is not
a property of individual sentences but an emergent quality of the entire text, arising from
the meaningful relationships that bind its parts into a whole. Without these relationships,
we are left with a random collection of facts, not a text.

While coherence frameworks like RST explain how sentences relate logically, another
crucial element of a connected text is its ability to consistently refer to the same entities—
people, places, and things—as the narrative unfolds. This brings us to the task of coref-
erence resolution: the process of identifying all linguistic expressions in a text that refer
to the same real-world entity. These expressions can take many forms, from proper names
and definite descriptions to pronouns.

Consider the following short passage:
Dr. Anya Sharma, a renowned physicist, published her latest findings. The lead

researcher from the institute explained that the discovery could change the field. Friends
noted that she had worked on the project for years.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 124

In this text, a human reader effortlessly understands that multiple phrases refer to
the same person. The goal of coreference resolution is to make this same connection
computationally explicit. The expressions involved are:

• Dr. Anya Sharma (a proper name)

• a renowned physicist (a description)

• her (a possessive pronoun)

• The lead researcher (another description)

• she (a personal pronoun)

All these phrases are coreferent—they refer to the same entity. A set of coreferent ex-
pressions is called a coreference chain or an entity cluster. The computational challenge
is to design an algorithm that can take a text and automatically group these referring
expressions into their correct chains.

Solving this task is fundamental for any application that requires deep language un-
derstanding. For a question-answering system to correctly answer ‘What did the lead
researcher publish?’, it must first establish that ‘the lead researcher’ is the same entity
as ‘Dr. Anya Sharma’. Similarly, for information extraction, grouping these mentions
allows a system to aggregate all known facts about a single, unique individual. Without
coreference resolution, a text is just a collection of disconnected statements; with it, a rich
and interconnected model of the entities and events within the text begins to emerge.

To systematically solve the coreference problem, we must first establish a precise vo-
cabulary. The fundamental unit is the referring expression, which is any noun phrase
that points to an entity in the world. These expressions can be proper nouns (e.g., Ada
Lovelace), pronouns (e.g., she, it), or descriptive noun phrases (e.g., the first computer
programmer). Coreference resolution is the task of clustering these referring expressions
into sets, where each set corresponds to a single real-world entity.

The most common relationship between referring expressions is anaphora, where an
expression, called the anaphor, refers back to a previously introduced entity, known as
the antecedent. This backward-looking reference is the backbone of textual coherence.
Consider the following:

The system failed the initial test. It was not robust enough.
Here, it is the anaphor, and its antecedent is the system. The relationship links the

two sentences together. A less frequent but structurally important pattern is cataphora,
which reverses this ordering. In cataphora, a referring expression points forward to an
entity that has not yet been mentioned. This is often used for stylistic or dramatic effect:

Although he didn’t expect it, David won the competition.
In this case, the pronoun he is a cataphor that refers forward to David.
Referring expressions themselves can be categorized, and understanding these cate-

gories is crucial for building computational models. The most obvious type of anaphor is
a pronoun, leading to what is called pronominal anaphora. This includes personal pro-
nouns (he, she, it, they), possessive pronouns (his, her, its, their), and reflexive pronouns
(himself, herself).

However, many references are not made with pronouns but with other noun phrases.
This is known as nominal anaphora. This category is diverse and includes several common
patterns:

• Repetition: A noun phrase is simply repeated for clarity.

We need to analyze the algorithm. The algorithm has a high time complexity.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 125

Term Definition Example

Referring Expression A noun phrase that points to an en-
tity in the world.

Ada Lovelace, she, the programmer

Anaphora An expression that refers back to
a previously introduced entity (the
antecedent).

The system failed. It was not robust.

Cataphora An expression that refers forward to
an entity that has not yet been in-
troduced.

Although he didn’t expect it, David won.

Antecedent The entity to which an anaphor
refers.

The system failed. It was not robust.

Pronominal Anaphora Anaphora where the referring ex-
pression is a pronoun.

We found the book. It was on the shelf.

Nominal Anaphora Anaphora where the referring ex-
pression is a noun phrase, not a pro-
noun.

The automaker issued a recall. The company...

Figure 8.2: Key terminology for coreference resolution, with definitions and examples.

• Synonyms/Related Nouns: An entity is referred to using a synonym, a hypernym
(a more general term), or a related word.

The automaker issued a recall. The company cited a manufacturing defect.

• Definite Descriptions: An indefinite noun phrase (a company) introduces an
entity, which is later referred to by a definite noun phrase (the company).

We hired a new engineer. The engineer starts on Monday.

Each of these patterns presents a unique challenge for a computational system. Linking
a pronoun to its antecedent often relies on grammatical cues like gender and number
agreement, whereas resolving nominal anaphora may require world knowledge or access to
a knowledge base like WordNet. For a structured summary of these key terms and their
relationships, please refer to the table in Fig. 8.2. This vocabulary provides the formal
framework needed to discuss and develop algorithms for coreference resolution.

To make the abstract task of coreference resolution concrete, let’s walk through a
brief narrative case study. The goal is to identify all atextual ‘mentions’—the referring
expressions—and group them into sets, or chains, where each set corresponds to a sin-
gle real-world entity. This process is fundamental for any system that needs to track
participants and objects through a text.

Consider the following short paragraph:
Dr. Elara Aris, a renowned astrophysicist, announced a groundbreaking discovery.

She confirmed the existence of an exoplanet with a breathable atmosphere, a finding
made possible by the James Webb Space Telescope. Her work has electrified the scientific
community. The powerful instrument had been observing the star system for months
before it yielded the crucial data. The discovery itself is so significant that it will likely
redefine the search for extraterrestrial life.

Even in this simple text, there are multiple entities and numerous expressions referring
to them. A successful coreference resolution system must untangle these references to build
a coherent model of the text’s meaning. As visualized in Fig. 8.3, we can trace three
distinct coreference chains within this narrative.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 126

Dr. Elara Aris,a renowned astrophysicist, announceda groundbreaking

discovery.Sheconfirmed the existence of an exoplanet with a breathable

atmosphere,a findingmade possible bythe James Webb Space Telescope.

Herwork has electrified the scientific community.The powerful instrument

had been observing the star system for months beforeityielded the crucial

data.The discovery itselfis so significant thatitwill likely redefine

the search for extraterrestrial life.

Entity 1: The Scientist

Entity 2: The Telescope

Entity 3: The Discovery

Figure 8.3: An illustration of coreference resolution within a narrative paragraph. Men-
tions belonging to the same entity are highlighted in a consistent color, revealing three
distinct coreference chains: the scientist (blue), the telescope (green), and the discovery
(orange).

• Entity 1: The Scientist. The first entity is introduced with the proper name
Dr. Elara Aris. This mention establishes the entity. Subsequent expressions that
co-refer with this entity include:

– a renowned astrophysicist : An appositive phrase that provides additional in-
formation about the same person.

– She: An anaphoric pronoun whose antecedent is clearly Dr. Elara Aris.

– Her : A possessive pronoun that also refers back to Dr. Aris. All four of these
expressions form a single chain referring to one individual.

• Entity 2: The Telescope. The second entity is introduced as the James Webb
Space Telescope. Later mentions include:

– The powerful instrument : A definite noun phrase that describes the telescope.
Resolving this requires world knowledge or contextual cues to know that a space
telescope is a type of instrument.

– it : The first instance of the pronoun ‘it’ in the text. Its antecedent is The
powerful instrument, and by extension, the telescope itself.

• Entity 3: The Discovery. The third entity is introduced with the indefinite noun
phrase a groundbreaking discovery. Other mentions are:

– a finding : Another noun phrase that acts as a synonym for the discovery.

– The discovery itself : A repetition that reinforces the reference.

– it : The second instance of ‘it’ in the text, referring to the significance of the
discovery.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 127

This example highlights the complexity of the task. Pronoun resolution, especially for
ambiguous pronouns like it, is a significant challenge. A system must correctly determine
whether it refers to the telescope, the discovery, or even the star system. Furthermore,
connecting Dr. Elara Aris to a renowned astrophysicist requires recognizing that the
latter is a description of the former, a task that often relies on syntactic cues and se-
mantic knowledge. Having established this goal of identifying chains, we now turn to the
computational models designed to solve this problem automatically.

With a grasp of the coreference task, we turn to its computational implementation.
Before the rise of deep learning, the dominant approach was to frame coreference reso-
lution as a supervised machine learning problem, relying heavily on carefully engineered
linguistic features. The most common framework for this was the mention-pair model.
This model works by considering every possible pair of mentions (mi,mj) in a text, where
the candidate antecedent mi precedes the anaphor mj . For each pair, a binary classifier
is trained to decide: are these two mentions coreferent?

To make this decision, the classifier cannot see the raw text directly. Instead, we must
extract a set of descriptive properties—features—that capture the relationship between
the two mentions. This process, known as feature engineering, was the art of classic
coreference resolution. The system’s performance depended entirely on the quality and
comprehensiveness of these features, which typically included:

• Lexical Features: These capture surface-level string properties.

– String Match: A binary feature indicating if the strings of mi and mj are
identical (e.g., ‘Apple’ and ‘Apple’).

– Head Noun Match: Do the head nouns of the two mentions match? (e.g., ‘the
tall man’ and ‘the man in the hat’).

– Substring Match: Is one mention a substring of the other? (e.g., ‘Dr. Evans’
and ‘Evans’).

• Grammatical Features: These leverage syntactic information, often derived from
a parse tree.

– Mention Type: Are the mentions proper nouns, common nouns, or pronouns?
A pronoun is very likely to have an antecedent.

– Number/Gender Agreement: Do the mentions agree in number (singular/plu-
ral) and gender (masculine/feminine/neuter)? ‘The company’ and ‘she’ are an
unlikely match.

– Syntactic Constraints: Does the syntactic relationship between the mentions
obey grammatical rules like Binding Theory? For instance, in ‘Dr. Smith saw
him,’ the pronoun him cannot refer to Dr. Smith, whereas in ‘Dr. Smith saw
himself,’ it must.

• Semantic Features: These features aim to capture meaning compatibility.

– Semantic Class: Do both mentions belong to the same named entity class (e.g.,
PERSON, ORGANIZATION)? ‘Google’ and ‘he’ would be a poor semantic
match.

– WordNet Similarity: How closely related are the head words in a semantic
lexicon like WordNet? This helps link synonyms or related concepts.

• Positional Features:

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 128

Input Text

Embeddings
(Word + Character Level)

Contextual Representations
(BiLSTM)

Scoring For All Spans

1. Mention Detection
Compute Mention Score

2. Antecedent Scoring
Compute Pairwise Score

Link Mentions
Choose antecedent with highest total score

Coreference Clusters

Figure 8.4: A simplified architectural diagram of a modern end-to-end neural coreference
resolution model. The diagram shows the flow of information from input text to final
coreference clusters. Key components illustrated include: 1) Word and character embed-
dings, 2) A BiLSTM to create contextual representations, 3) A mention detection module
that scores all possible text spans, and 4) An antecedent scoring module that links each
detected mention to its most likely antecedent.

– Sentence Distance: How many sentences separate the two mentions? Corefer-
ence is much more likely between mentions that are close to each other.

A classifier, such as a decision tree or logistic regression model, is trained on an an-
notated corpus where true coreference links are marked. It learns to weigh these diverse
features to predict the probability that any given pair of mentions is coreferent.

Finally, since the model only makes pairwise decisions, a separate clustering step is
needed to form the final coreference chains. A common method is to apply transitive
closure: if the model predicts that (A, B) is a coreferent pair and (B, C) is also a coreferent
pair, then A, B, and C are all grouped into a single entity cluster. This feature-driven
approach was powerful but brittle; it depended on a complex pipeline of other NLP tools
(parsers, NER taggers) and an immense, time-consuming effort in feature design.

While classic machine learning models for coreference resolution were a significant step
forward, they relied heavily on feature engineering. This process involved manually de-
signing hundreds of linguistic features—such as number agreement, gender, semantic class,
and syntactic relationships derived from a parser—to help the model make its decisions.
This approach was not only labor-intensive and required deep linguistic expertise, but it
also resulted in brittle systems that performed poorly on text from new domains where
the hand-crafted features were less effective. A more integrated and data-driven approach
was needed to overcome these limitations.

The breakthrough came with the development of end-to-end neural network models.
The term ‘end-to-end’ signifies a paradigm shift: instead of relying on a pipeline of sep-
arate, pre-processing tools (like POS taggers or parsers), a single neural network learns
to perform the entire task, from raw text input to final coreference cluster output. This
approach allows the model to learn its own internal representations and features directly
from the data, making it more robust and adaptable.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 129

A typical architecture for a modern neural coreference model is shown in Fig. 8.4. The
process begins by converting the input text into a sequence of rich vector representations.
This is done by combining pre-trained word embeddings (as discussed in Chapter 7) with
character-level embeddings, which help the model handle unknown words. These initial
vectors are then fed into a bidirectional Long Short-Term Memory network (BiLSTM). The
BiLSTM processes the sequence both forwards and backwards, producing a context-aware
representation for every word that incorporates information from the entire sentence.

From these contextualized word vectors, the model performs two interconnected tasks:

1. Mention Detection: The model considers every possible contiguous span of text
(e.g., ‘Dr. Evans,’ ‘the professor,’ ‘she’) as a potential mention. For each span, it
computes a mention score, which represents the model’s confidence that the span
is a valid referring expression. This is a crucial step, as the model does not know
beforehand which words constitute mentions.

2. Antecedent Scoring: For every span i that is identified as a potential mention, the
model considers every preceding span j as a potential antecedent. It then computes
a coreference score, s(i, j), for the pair. This score indicates the likelihood that
mention i and mention j refer to the same entity.

The scoring function s(i, j) is the heart of the model. It is a neural network component
that takes the vector representations of the two spans as input and outputs a single scalar
value. The span representations themselves are sophisticated, often created using an
attention mechanism over the words within the span. This allows the model to focus on
the most important words (e.g., the head noun) when representing a mention. The full
scoring function for a mention i can be expressed as:

s(i, j) = smention(i) + smention(j) + santecedent(i, j)

Here, smention is the score for an individual span being a mention, and santecedent is
the score for the pairwise link. The model also considers the possibility that a mention is
new and has no antecedent by linking it to a special null antecedent, ϵ. During training,
the model learns to assign high scores to correct antecedent links found in an annotated
corpus. At inference time, for each mention, the model simply chooses the preceding
mention (or the null antecedent) that yields the highest score. This elegant integration
of mention detection and linking within a single, trainable system has largely replaced
feature-based methods, setting the current standard for coreference resolution.

Having explored how meaning is built across sentences in static text, we now shift
our focus to a more dynamic and interactive form of discourse: dialogue. The principles
of coherence and coreference are arguably even more critical here, as a computer must
understand and participate in a back-and-forth conversation with a human user. The
systems designed for this purpose are known as dialogue systems or conversational
agents. You interact with them daily in the form of virtual assistants like Siri and Alexa,
customer service chatbots, and voice-controlled smart home devices.

Broadly, we can distinguish between two major types of conversational agents:

• Task-Oriented Systems: These agents are engineered to help a user complete a
specific goal within a well-defined domain. Examples include booking a flight, order-
ing a pizza, or finding a local restaurant. Their dialogue is structured, purposeful,
and aimed at efficiently collecting the information needed to perform an action.

• Open-Domain Chatbots: In contrast, these systems, often called ‘chit-chat’ bots,
aim to engage in general, unconstrained conversation. Their primary goal is not

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 130

Natural Language
Understanding

(NLU)

Dialogue State
Tracker
(DST)

Dialogue Policy
Natural Language

Generation
(NLG)

User
Utterance

Semantic
Frame

Dialogue
State

System
Action

System
Response

Figure 8.5: A diagram of the pipeline architecture for a traditional task-oriented dia-
logue system. It illustrates the sequential flow of information from the user’s utterance
through four core modules: Natural Language Understanding (NLU), Dialogue State
Tracker (DST), Dialogue Policy, and Natural Language Generation (NLG), culminating
in a system response back to the user.

task completion but rather social engagement, providing companionship, or simply
mimicking human-like interaction for entertainment.

While open-domain systems pose fascinating and complex research challenges, the
foundational principles of dialogue modeling are best illustrated through the modular
architecture of task-oriented systems. They provide a clear framework for applying core
computational linguistics concepts to a dynamic setting. In the following sections, we will
dissect the typical components of such a system to understand precisely how it interprets
user requests, manages the conversation’s state, decides what to do next, and generates a
coherent response.

Having explored how sentences connect to form a coherent text, we now shift our fo-
cus to modeling an entire conversation. The principles of discourse are central to building
dialogue systems, also known as conversational agents or chatbots. While open-domain
chatbots like those in entertainment aim for general conversation, many of the most prac-
tical systems are task-oriented. Their goal is to help a user complete a specific task, such
as booking a flight, ordering a pizza, or finding a restaurant. Historically, these systems
are built using a modular pipeline architecture, where the problem is broken down into a
series of distinct components. As illustrated in Fig. 8.5, this classic architecture consists
of four main modules: Natural Language Understanding (NLU), a Dialogue State Tracker
(DST), a Dialogue Policy, and Natural Language Generation (NLG).

The first component, Natural Language Understanding (NLU), serves as the
system’s ‘ears.’ Its responsibility is to interpret the user’s raw text utterance and convert
it into a structured, machine-readable format. This process typically involves two key
sub-tasks:

• Intent Classification: This is the task of identifying the user’s primary goal or
purpose. For example, in the utterance ‘I need to book a flight to Berlin,’ the
intent is book_flight. Other possible intents in a travel system might include
check_booking_status or ask_for_weather.

• Slot Filling: This task, which is a form of information extraction, identifies and
extracts the key pieces of information, or slots, from the utterance that are necessary
to fulfill the intent. In our example, Berlin would be identified as the value for the
destination slot.

The output of the NLU module is a semantic frame, a simple data structure that
combines the intent and the filled slots. For the utterance ‘I need a flight to Berlin
for next Tuesday,’ the NLU would produce a frame like: {intent: "book_flight",
destination: "Berlin", departure_date: "next Tuesday"}. This structured repre-
sentation is far easier for the subsequent components of the system to process than the
original, ambiguous natural language text.

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 131

The semantic frame is then passed to the Dialogue State Tracker (DST), which acts
as the system’s memory. The DST’s job is to maintain the dialogue state throughout the
conversation. The state is a summary of everything that has happened so far, aggregating
information across multiple turns. It tracks all the constraints the user has specified (e.g.,
destination, time, price range) and what the system’s last action was. For each turn, the
DST takes the NLU output from the current user utterance and the dialogue state from
the previous turn, and produces an updated state. If the user first says ‘I need a flight
to Berlin’ and then, in response to a system query, says ‘I want to leave tomorrow,’ the
DST would ensure the final state contains both pieces of information: {destination:
"Berlin", departure_date: "2023-10-27"}.

With an updated state from the DST, the Dialogue Policy (π) must decide what the
system should do next. The policy is the ‘brain’ of the operation, mapping the current
dialogue state to a specific system action. It functions as a decision-making component.
For a state s, the policy selects an action a, such that π(s) = a. These actions are abstract,
formal representations, not yet natural language. Examples of system actions include:

• request(origin_city): Ask the user for a required piece of information.

• confirm(destination: "Berlin"): Explicitly confirm a piece of information with
the user.

• inform(flight_options): Provide the user with the information they requested.

• api_call(search_flights): Query an external database or API.

Policies can range from simple, hand-crafted rules (e.g., "IF destination is known
but origin is not, THEN request(origin)") to complex statistical models learned using
Reinforcement Learning, where the system learns the optimal action to take in any state
by maximizing a reward signal, such as successful task completion.

Finally, the abstract action selected by the policy is sent to the Natural Language
Generation (NLG) module, which serves as the system’s ‘mouth.’ The NLG’s sole task
is to translate the system action into a fluent, human-readable text response. For example,
the action request(origin_city) might be converted into ‘Where will you be departing
from?’ or ‘What city are you flying out of?’. The simplest NLG systems use templates with
slots to fill (e.g., ‘OK, a flight to [destination]. Where from?’). More sophisticated neural
models can generate more varied and natural-sounding responses, making the interaction
feel less robotic. This generated text is then presented to the user, completing one full
turn of the dialogue and preparing the system for the user’s next utterance.

To make these components concrete, let’s trace a simplified interaction with a task-
oriented dialogue system designed to book flights. The system’s goal is to fill a set of
required slots (e.g., origin, destination, date) to complete the task. The entire flow of this
conversation, showing how information is processed at each turn, is detailed in Fig. 8.6.

Imagine the user begins with the following utterance:

• User: ‘I want to book a flight to Berlin next Tuesday.’

The system’s pipeline springs into action. First, the NLU module processes this
utterance to extract the user’s intent and any relevant information. It identifies the
intent as book_flight and fills two slots: destination: Berlin and date: 2024-10-29
(assuming the system can resolve ‘next Tuesday’ to a specific date).

Next, this structured information is passed to the Dialogue State Tracker (DST).
The DST maintains the system’s belief about the conversation’s state. It receives the
NLU output and updates its internal record, which now indicates that the destination and

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 132

Speaker Utterance NLU (Intent &
Slots)

Dialogue State (Up-
dated Slots)

Policy (Sys-
tem Action)

NLG (System Re-
sponse)

User ‘I want to book a flight to
Berlin next Tuesday.’

— — — —

System — intent : book_flight
slots: {destina-
tion: Berlin, date:
2024-10-29}

{destination: Berlin,
date: 2024-10-29,
origin: null}

request(origin) ‘Certainly. Where
will you be departing
from?’

User ‘I’m flying from San Fran-
cisco.’

— — — —

System — slots: {origin: San
Francisco}

{destination: Berlin,
date: 2024-10-29,
origin: San Francisco}

confirm_and_-
search

‘Got it. A flight
from San Francisco
to Berlin for October
29th. Shall I search?’

Figure 8.6: Trace of a simplified flight-booking dialogue. The table shows how user input
is processed through the NLU, DST, and Policy components to generate a system response
over two turns.

date are known. Crucially, the DST is also aware of the required slots for a book_flight
intent and recognizes that a key piece of information, the origin city, is still missing.

The updated dialogue state is then fed to the Dialogue Policy. This component acts
as the system’s brain, deciding what to do next. Seeing that the origin slot is empty,
the policy’s strategy is to request this missing information. It selects an abstract system
action, such as request(origin).

Finally, this abstract action is sent to the NLG module. The NLG’s job is to trans-
late the system’s intent into a cooperative, human-readable sentence. For the request ⌋

(origin) action, it might generate:

• System: ‘Certainly. Where will you be departing from?’

The user’s subsequent response (‘I’m flying from San Francisco’) would initiate the
same cycle again. The NLU would extract origin: San Francisco, the DST would up-
date the state to reflect that all necessary slots are now filled, and the Policy would decide
on a new action, like confirm_and_search. This turn-by-turn interaction, as visualized in
Fig. 8.6, demonstrates the pipeline’s deterministic flow. Each component has a specialized
role: NLU interprets, the DST remembers, the Policy decides, and NLG communicates,
working in concert to achieve a specific goal.

To conclude, the three pillars of this chapter—discourse analysis, coreference reso-
lution, and dialogue modeling—are not isolated fields but are fundamentally intercon-
nected. Understanding language requires moving beyond the analysis of single sentences.
Discourse analysis provides the theoretical framework for understanding how multiple sen-
tences combine to form a coherent and structured text, explaining the logical and rhetorical
links between utterances.

Within this broader structure, coreference resolution serves as a critical enabling task.
It provides the mechanism for tracking entities—people, places, and concepts—as they
are mentioned and re-mentioned throughout a text or conversation. Without it, a system
cannot connect ‘the scientist’ to a later mention of ‘she.’

Ultimately, both of these concepts are prerequisites for building effective dialogue
systems. A conversational agent relies on an implicit understanding of discourse structure
to generate relevant responses and uses coreference resolution to maintain context across

CHAPTER 8. DISCOURSE, COREFERENCE, AND DIALOGUE 133

Discourse
Analysis

Coreference
Resolution

Dialogue
Systems

is a key sub-task of

pr
ov

id
es

 s
tr
uc

tu
re enables tracking

Figure 8.7: A conceptual diagram illustrating the foundational role of Discourse Analysis
and Coreference Resolution in the development of Dialogue Systems.

turns. As visually summarized in Fig. 8.7, these foundational components are what elevate
a system from a simple command-processor to a truly conversational partner.

Chapter 9

Machine Translation

134

CHAPTER 9. MACHINE TRANSLATION 135

1949

Warren Weaver's
Memorandum

1954

Georgetown-IBM
Experiment

1966

ALPAC Report
("AI Winter")

c. 1990

Rise of Statistical MT
(SMT)

c. 2003

Phrase-Based SMT

2014

Neural MT (NMT)
seq-to-seq models

2017

Transformer
Architecture

Figure 9.1: A timeline showing key milestones in the history of Machine Translation (MT),
from early concepts to modern neural architectures.

Machine Translation (MT) stands as one of the oldest and most ambitious goals in
the history of computer science. The dream of automatic translation is nearly as old as
the electronic computer itself. Long before the term ‘artificial intelligence’ was coined,
researchers envisioned machines that could break down language barriers, a quest that
began in earnest after World War II. The field’s origins are often traced to a 1949 mem-
orandum by scientist Warren Weaver, who famously proposed treating translation as a
problem of cryptography—essentially ‘decoding’ a foreign language.

This early optimism fueled efforts like the 1954 Georgetown-IBM experiment, a public
demonstration that successfully translated a small set of Russian sentences into English.
The initial hype, however, soon met the profound complexity of human language. The
influential 1966 ALPAC report concluded that progress was slow and expensive, ushering
in a long ‘AI winter’ for MT research. It was only with the rise of new data-driven
statistical and neural methods that the field experienced its modern renaissance. This
dramatic history, from early rule-based systems to today’s powerful models, is outlined in
the timeline in Fig. 9.1.

At its core, machine translation (MT) is the task of automatically converting text
from a source language to a target language. The goal is to produce a translation that
is both fluent in the target language and faithful to the source text’s meaning. Over the
decades, the computational approach to this challenge has evolved through three distinct
paradigms, each with a fundamentally different philosophy. This chapter will focus on the
latter two, but understanding all three provides essential context.

1. Rule-Based Machine Translation (RBMT): The earliest systems relied on di-
rect human expertise. RBMT uses vast sets of hand-crafted rules created by linguists,
including large bilingual dictionaries for word-level translation and explicit rules for
grammatical transformations (e.g., word reordering to match target syntax). This
approach is highly interpretable but brittle; it struggles with linguistic ambiguity
and exceptions, and requires immense manual effort to build and maintain.

2. Statistical Machine Translation (SMT): The dominant paradigm from the
1990s to the mid-2010s, SMT reframes translation as a probabilistic problem. In-
stead of rules, SMT systems learn how to translate by analyzing massive parallel
corpora. The guiding principle is to find the most probable translation t for a given
source sentence s, a task often modeled using Bayes’ theorem: P (t|s). These systems
learn word and phrase correspondences directly from data.

CHAPTER 9. MACHINE TRANSLATION 136

"The bat flew over the field."

Interpretation 1

Spanish: El murciélago voló...

(bat = flying mammal)

Interpretation 2

Spanish: El bate voló...

(bat = sporting equipment)

Figure 9.2: An illustration of lexical ambiguity using the English sentence ‘The bat flew
over the field.’ The word ‘bat’ can be interpreted as either a flying mammal (murciélago in
Spanish) or as sporting equipment (bate in Spanish), leading to two different translations.

3. Neural Machine Translation (NMT): The current state-of-the-art, NMT uses
deep neural networks for translation. Architectures like sequence-to-sequence models
encode the source sentence into a dense vector representation and then decode this
representation into the target language. This holistic, end-to-end approach allows
the model to capture complex context and long-range dependencies, overcoming
many limitations of the more fragmented SMT pipeline.

At its heart, translation is a process of mapping meaning from a source language to a
target language. If language were a simple code where each word had a single, unambigu-
ous counterpart, this would be a trivial task. However, the reality is far more complex.
The fundamental difficulty of machine translation stems from the inherent ambiguity of
human language, which manifests in several critical ways.

The most straightforward challenge is lexical ambiguity, where a single word can have
multiple meanings. Consider the English word ‘bat.’ As shown in Fig. 9.2, the sentence
‘The bat flew over the field’ presents two distinct interpretations. In Spanish, these mean-
ings require entirely different words: murciélago for the flying mammal and bate for the
sporting equipment. Without sufficient context, an MT system cannot know which trans-
lation is correct. Similarly, words like ‘bank’ (a financial institution or a river’s edge) or
‘light’ (not heavy or a form of energy) present the same problem. The system must learn
to disambiguate based on the surrounding words.

Equally challenging is structural ambiguity, where the grammatical structure of a sen-
tence allows for multiple interpretations. The classic example is ‘I saw the man with the
telescope.’ This sentence could mean:

1. I used a telescope to see the man.

2. I saw a man who was holding a telescope.

A human speaker often resolves this ambiguity unconsciously, but an MT system must
make an explicit choice. This is crucial because the two interpretations might require
vastly different grammatical constructions in the target language.

CHAPTER 9. MACHINE TRANSLATION 137

Finally, languages fundamentally differ in their syntactic structure, such as word or-
der. English follows a Subject-Verb-Object (SVO) order (‘She reads the book’), while lan-
guages like Japanese use Subject-Object-Verb (SOV) and Irish uses Verb-Subject-Object
(VSO). These differences require more than a simple reordering of words; they demand a
deep analysis of the sentence’s grammatical structure. These challenges demonstrate that
translation is not merely a process of substitution but a complex task of interpretation
and generation.

Modern machine translation systems, particularly the statistical and neural paradigms
we will explore, learn to translate not from hand-crafted linguistic rules but from data.
The essential resource for this data-driven approach is the parallel corpus, also known as
a bitext. A parallel corpus is a collection of texts in a source language presented alongside
its translation in a target language.

Crucially, these texts are aligned, most commonly at the sentence level. This means
each sentence in the source text is explicitly linked to its corresponding translated sentence.
For example:

• EN: The book is on the table.

• DE: Das Buch liegt auf dem Tisch.

By processing millions or even billions of these aligned sentence pairs, MT models
discover powerful statistical patterns. They learn the probability that a source word like
‘book’ corresponds to a target word like ‘Buch,’ and that the phrase ‘on the table’ often
translates to ‘auf dem Tisch.’

Sources for large-scale parallel corpora are often official documents that require trans-
lation by law, such as the proceedings of the Canadian Parliament (the Hansard corpus)
or the European Parliament (Europarl). Religious texts and translated literary works also
serve as valuable sources. The size and quality of this training data are paramount; they
are arguably the single most important factors influencing the performance of a modern
MT system.

How do we automatically measure the quality of a translation? While human evalua-
tion is the gold standard, it is slow, expensive, and difficult to replicate consistently. For
the rapid development and comparison of systems, we need automated metrics. The most
influential of these is BLEU (Bilingual Evaluation Understudy). The core intuition be-
hind BLEU is straightforward: a good machine translation will share a significant number
of words and phrases with a professional human translation.

BLEU measures the correspondence between a machine-generated translation (the
candidate) and one or more high-quality human translations (the references). Its score
is based on a modified form of n-gram precision. For different n-gram sizes (typically
1-grams to 4-grams), we calculate the proportion of n-grams in the candidate that also
appear in any of the reference translations. To prevent systems from gaining an unfair
advantage by over-generating common words, this precision is ‘clipped.’ For example, if
the word ‘the’ appears once in a reference but three times in the candidate, its count for
the precision calculation is clipped to one.

Furthermore, a system could achieve high precision by producing a very short but
accurate output. To counteract this, BLEU incorporates a brevity penalty (BP) that
penalizes candidate translations that are shorter than their corresponding references. The
final score combines these elements as a geometric mean of the modified n-gram precisions,
multiplied by the brevity penalty:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)

CHAPTER 9. MACHINE TRANSLATION 138

Intended Target Sentence

y Noisy Channel
Observed Source Sentence

x

Decoder
argmax P(x|y)P(y)y

Best Target Sentence

ŷ
Language Model

P(y)

Translation Model

P(x|y)

Figure 9.3: A diagram of the noisy channel model for Statistical Machine Translation.
The top half shows the conceptual model: an intended target sentence ‘y’ is transformed
by a ‘noisy channel’ into an observed source sentence ‘x’. The bottom half illustrates
the decoding task: a decoder takes ‘x’ as input and uses a Language Model P(y) and a
Translation Model P(x|y) to find the most probable target sentence ‘ŷ’.

Here, pn is the modified n-gram precision for n-grams of size n, and N is typically
4. While indispensable for research, it’s crucial to remember that BLEU is an imperfect
proxy for quality and does not always correlate perfectly with human judgments of fluency
or adequacy.

The breakthrough of Statistical Machine Translation (SMT) was to reframe translation
not as a linguistic puzzle of rule application, but as a problem of probability. Given a source
sentence x (e.g., in French), the goal is to find the target sentence y (e.g., in English) that is
most probable. We want to find the y that maximizes the conditional probability P (y|x):

ŷ = argmax
y

P (y|x)

Directly modeling P (y|x) is difficult. The key insight of SMT was to use Bayes’
theorem to decompose this problem into two more manageable components:

P (y|x) = P (x|y)P (y)

P (x)

Since we are searching for the best y for a fixed input x, the denominator P (x) is a
constant and can be ignored. Our maximization problem thus becomes:

ŷ = argmax
y

P (x|y)P (y)

This formulation is famously known as the noisy channel model, a concept borrowed
from information theory (see Fig. 9.3). We imagine that the ‘true’ message is the target
sentence y, which was corrupted by a ‘noisy channel’ to produce the source sentence x
that we observe. The decoder’s task is to recover the original message by combining two
separate models:

CHAPTER 9. MACHINE TRANSLATION 139

The blue housedoes not have a floppy disk

La maisonbleue n' a pas de disquette
Figure 9.4: An illustration of word alignment between an English source sentence and
its French translation, as described in Fig. 9.7. The lines show different alignment pat-
terns: one-to-one (e.g., *house* → *maison*), one-to-many (e.g., *not* → *n’ pas*), and
many-to-one (e.g., *floppy disk* → *disquette*). The English word *does* is unaligned,
demonstrating a NULL alignment.

• The Translation Model, P (x|y): This component answers the question: how
likely are we to see the source sentence x if the original sentence was y? It models
the faithfulness of the translation. For instance, it would assign a high probability
to P (le chat|the cat).

• The Language Model, P (y): This component, which we covered in Chapter
4, answers the question: how likely is y to be a sentence in the target language?
It models the fluency of the translation, ensuring the output is grammatical and
natural. For example, P (the cat sat) would be much higher than P (cat the sat).

SMT’s power lies in this separation. It searches for a translation that is not only a
plausible rendering of the source text (a high translation model probability) but is also
a well-formed sentence in the target language (a high language model probability). The
system must balance these two competing objectives to find the optimal output.

Before an SMT system can learn that the French phrase ne ... pas is a good translation
for the English phrase do not, it must first learn a more fundamental correspondence: that
the word pas often appears in French sentences when the word not appears in their English
counterparts. This foundational task of identifying word-level correspondences between
sentences in a parallel corpus is known as word alignment. It is the essential first step in
learning a statistical translation model. The goal is to produce a mapping that indicates
which word or words in the target sentence are translations of each word in the source
sentence.

This mapping is rarely a simple one-to-one correspondence between words in sequence.
Languages have different grammatical structures, word orders, and ways of expressing
concepts. As illustrated in Fig. 9.4, word alignments can exhibit several patterns:

• One-to-one: A single source word maps to a single target word (e.g., blue → bleu).
This is the most straightforward type of alignment.

CHAPTER 9. MACHINE TRANSLATION 140

• One-to-many: A single source word maps to multiple target words. This often
occurs when a concept encapsulated in one word in the source language requires a
multi-word phrase in the target language (e.g., a German verb like mitgehen might
align to go with in English).

• Many-to-one: Multiple source words map to a single target word (e.g., the English
phrase floppy disk aligns to the single French word disquette).

• Many-to-many: Multiple source words map to multiple target words, a common
pattern for idioms or complex phrases.

Furthermore, some words in one language may have no direct equivalent in the other.
For instance, English requires an auxiliary verb in ‘I do not agree,’ where the word do has
a purely grammatical function. In its French translation, ‘Je ne suis pas d’accord,’ the
word do has no corresponding word. We model this by allowing source words to align to
a special NULL token in the target sentence, effectively marking them as unaligned. The
number of target words a source word aligns to is sometimes called its fertility.

Word alignments are not present in our parallel corpora; we only have the source and
target sentences. The alignments are therefore latent variables that must be inferred.
The core challenge is a circular one: if we had correct word alignments, we could easily
estimate the probability of a word being the translation of another. Conversely, if we knew
these translation probabilities, we could determine the most likely alignments. Breaking
this cycle is the primary goal of the first SMT models. They are designed to learn these
alignments automatically from nothing more than thousands of sentence pairs, forming
the statistical bedrock upon which the entire translation model is built.

The foundational work on learning word alignments automatically was conducted at
IBM in the early 1990s. The result was a series of five increasingly complex statistical
models, known collectively as the IBM Models, which provided a principled, data-driven
method for this crucial sub-task. These models treat the alignment as a hidden variable;
while we observe the source and target sentences in a parallel corpus, the true word-level
correspondences are unknown and must be inferred.

The core of the IBM Models is a generative story that probabilistically describes how
a target sentence T and its alignment A could be generated from a source sentence S.
The objective is to learn model parameters that maximize the probability P (T,A|S). The
simplest of these, IBM Model 1, imagines a straightforward, if linguistically naive, process:
for each position in the target sentence, it first chooses a source word to align with and
then generates the target word based on a learned translation probability, p(t|s).

The key challenge is that we know neither the alignments nor the translation prob-
abilities. The IBM Models solve this chicken-and-egg problem using the Expectation-
Maximization (EM) algorithm. The process iterates between two steps:

• E-Step (Expectation): Using the current estimates of translation probabilities,
calculate the expected alignment counts for all word pairs in the corpus. Essentially,
we ‘softly’ guess the alignments.

• M-Step (Maximization): Use these expected counts to re-estimate and improve
the translation probabilities. We update our model based on the guesses from the
E-step.

This iterative process, which might start with uniform probabilities, converges towards
a robust set of lexical translation probabilities. The subsequent models (Model 2 through
5) build upon this foundation, adding more sophisticated parameters to account for lin-
guistic phenomena like word reordering (distortion) and the number of words a source

CHAPTER 9. MACHINE TRANSLATION 141

word translates to (fertility). These models were revolutionary, providing the statistical
bedrock upon which phrase-based SMT was built.

While the IBM Models provided a powerful mathematical foundation for learning word-
to-word correspondences, translating text one word at a time is fundamentally flawed.
The limitations of this approach quickly become apparent. Languages have different word
orders, and meaning is often conveyed by groups of words, not single lexical items. A word-
for-word translation of the English phrase the green house into Spanish might incorrectly
yield el verde casa, when the correct translation is la casa verde, demonstrating a change in
both noun-adjective order and gender agreement. Furthermore, idiomatic expressions are
impossible to translate literally; the English idiom he kicked the bucket has no meaningful
word-for-word equivalent in most other languages.

The solution to these challenges was the leap from word-based to phrase-based statis-
tical machine translation. This paradigm shift is centered on a simple but powerful idea:
the fundamental unit of translation should not be a single word, but a contiguous sequence
of words, or a ‘phrase.’1 Instead of translating green and then house, the system learns
to translate the block green house directly into casa verde. This seemingly simple shift
allows the model to inherently learn local reordering, collocations, and short idiomatic
expressions directly from the data.

The core of a phrase-based SMT system is a phrase table, which stores a massive
collection of source phrases, their corresponding target phrase translations, and the prob-
abilities associated with each pairing. These phrase pairs are not defined by linguistic
rules but are extracted automatically from the parallel corpus using the word alignments
generated by the IBM Models. The guiding heuristic is simple: any group of source words
that is consistently aligned only with a specific group of target words across the corpus is
a candidate phrase pair.

For instance, from the alignment between the green house and la casa verde, the system
could extract the following valid phrase pairs:

• (the, la)

• (house, casa)

• (green house, casa verde)

• (the green house, la casa verde)

Each of these pairs is assigned a translation probability, such as p(casa verde|green house),
estimated from its frequency of co-occurrence in the aligned corpus. By learning to trans-
late multi-word chunks, phrase-based SMT achieved a dramatic improvement in transla-
tion fluency and adequacy over its word-based predecessors. The model no longer had to
piece together translations from individual words; it could now use larger, more mean-
ingful building blocks. With a massive phrase table constructed, the task of translation
transforms into a search problem: finding the optimal way to segment the source sentence
into phrases and combine their most probable translations to form a coherent and fluent
target sentence.

Once we have a phrase table and a language model, the central task is to combine
them to translate a new source sentence, f . The challenge is not just to find a translation,
but the best one. Formally, we are searching for the target sentence, ê, that maximizes the
probability of the translation. This is expressed as finding the sentence that maximizes

1It is crucial to note that in this context, the term ‘phrase’ does not refer to a formal linguistic
constituent like a noun phrase or a verb phrase. It simply means any contiguous sequence of one or more
words from a sentence.

CHAPTER 9. MACHINE TRANSLATION 142

a score combining the translation model (TM), which ensures faithfulness to the source,
and the language model (LM), which ensures fluency in the target language:

ê = argmax
e

scoreTM (f , e) · scoreLM (e)

Finding this optimal translation is a monumental search problem. Consider the pos-
sibilities: a single source sentence can be segmented into phrases in many different ways.
Each source phrase might have dozens of possible target phrase translations in our phrase
table. Finally, the chosen target phrases can often be reordered to fit the grammatical
structure of the target language. This combination of segmentation, translation, and re-
ordering choices leads to a combinatorial explosion, creating an astronomically large space
of candidate translations. Generating and scoring every single one to find the absolute
best is computationally impossible for all but the shortest of sentences.

This search for the highest-scoring translation is known as decoding. To make this
problem tractable, SMT systems rely on heuristic algorithms. The dominant approach is
a form of beam search. Instead of exploring all paths, a beam search decoder builds the
translation incrementally, typically from left to right. At each step, it considers all possible
ways to extend its current set of partial translations, or hypotheses. It then scores these
newly expanded hypotheses and prunes the list, keeping only a fixed number of the most
promising ones—a collection known as the ‘beam.’ All other, lower-scoring hypotheses are
permanently discarded. This process of extending and pruning continues until complete
sentences are formed.

Beam search is a greedy approach; by discarding hypotheses at each step, it is not
guaranteed to find the single best translation. However, it provides an essential trade-
off between computational cost and translation quality. It effectively navigates the vast
search space to find a very high-quality translation in a fraction of the time an exhaustive
search would require.

To make the decoding process concrete, let’s walk through a simplified case study
of a phrase-based SMT system translating the English sentence, ‘The small house is on
the hill’, into Spanish. The goal of the system is to find the Spanish sentence ŝ that
maximizes a probabilistic score combining three components: a phrase translation model,
a reordering (or distortion) model, and a target language model.

Step 1: SegmentationFirst, the system considers all possible ways to segment the
source sentence into phrases that exist in its pre-learned phrase table. For instance, a few
of the many possible segmentations are:

• [The small house] [is on] [the hill]

• [The] [small house] [is] [on the hill]

• [The small] [house] [is on the hill]

Step 2: Translation OptionsFor each segmented phrase, the system looks up potential
translations and their associated probabilities, ϕ(target phrase|source phrase), from the
phrase table. A sample of these options might include:

• The small house → La casa pequeña (prob: 0.7), La pequeña casa (prob: 0.2)

• is on → está en (prob: 0.9)

• the hill → la colina (prob: 0.8), el cerro (prob: 0.1)

• small house → casa pequeña (prob: 0.6)

CHAPTER 9. MACHINE TRANSLATION 143

Step 3: Decoding and ScoringThe decoder’s job is to navigate the immense search space
of these options to find the highest-scoring complete translation. It does this by building
hypotheses incrementally. Let’s compare two competing hypotheses for translating the
first part of the sentence, ‘The small house’:

• Hypothesis A: This hypothesis is generated by translating the single phrase [The
small house] to La pequeña casa. This translation is monotonic—it directly pre-
serves the English word order. It would incur a very low reordering penalty. Its
score would be based on the phrase translation probability (0.2) and the language
model’s probability for ‘La pequeña casa’.

• Hypothesis B: This hypothesis is generated from the same source phrase [The
small house] but uses the higher-probability translation La casa pequeña. This
phrase pair implicitly captures the necessary reordering of the adjective.

The crucial step is scoring these alternatives with the Spanish language model. A
strong language model, trained on vast amounts of Spanish text, would know that casa
pequeña (house small) is far more common and natural than pequeña casa (small house).
Therefore, the language model score for Hypothesis B, PLM (La casa pequeña), would be
significantly higher than for Hypothesis A.

Even if Hypothesis A had a lower reordering cost, the powerful signal from the language
model makes Hypothesis B the clear winner for this part of the sentence. The decoder
prunes away less likely hypotheses like A and continues building upon promising ones like
B. By extending this process, it combines La casa pequeña with the best translations
for the rest of the sentence (e.g., está en and la colina), ultimately yielding the final,
fluent output: La casa pequeña está en la colina.

For over a decade, Statistical Machine Translation, particularly phrase-based systems,
represented the state-of-the-art. These models were a significant leap over their rule-based
predecessors and produced useful translations for many language pairs. However, their
core architecture contained inherent weaknesses that ultimately limited their potential
and motivated a paradigm shift toward a new, more integrated approach.

The primary limitations of SMT systems stemmed from their complexity and frag-
mented design. An SMT system was not a single, unified model but a complex pipeline
of several independently optimized components, including:

• A translation model to map source phrases to target phrases.

• A language model to ensure the fluency of the target output.

• A reordering model to handle different word orders between languages.

Tuning these disparate parts to work together was a formidable task, and errors from
one stage would inevitably propagate to the next. Furthermore, SMT systems required
extensive and painstaking feature engineering. Human experts had to manually design
hundreds or even thousands of features to guide the translation process, making the models
brittle and difficult to adapt to new language pairs or domains.

Perhaps most critically, phrase-based SMT had a fundamentally local view of the trans-
lation task. By processing sentences chunk by chunk, it struggled to capture long-range
dependencies and broader contextual nuances, often resulting in disfluent or grammati-
cally awkward output. The desire for a single, powerful model that could learn to translate
in an end-to-end fashion—reading an entire source sentence and generating a translation
without separate components—led directly to the rise of Neural Machine Translation.

The paradigm shift to Neural Machine Translation (NMT) introduced a fundamentally
different and more elegant architecture for tackling the translation task. Instead of a

CHAPTER 9. MACHINE TRANSLATION 144

Encoder Decoder

RNN RNN RNN

je suis étudiant

c

Context
Vector

RNN RNN RNN

I am a ...

<start> I am

Figure 9.5: A high-level architectural diagram of a sequence-to-sequence (seq2seq) model,
as described in Fig. 9.13. The Encoder RNN processes the input sentence step-by-step,
compressing it into a fixed-size context vector. The Decoder RNN then uses this vector
to generate the output sentence token-by-token in an auto-regressive manner.

complex pipeline of separately engineered components, as seen in SMT, NMT uses a
single, large neural network that is trained end-to-end. The foundational architecture for
this approach is the sequence-to-sequence (seq2seq) model, which is designed to map
an input sequence of one length to an output sequence of a potentially different length.
This model consists of two primary components: an encoder and a decoder.

The encoder is tasked with processing the source sentence and compressing its mean-
ing into a dense, fixed-size numerical representation. As depicted in Fig. 9.5, the encoder
is typically a Recurrent Neural Network (RNN), or one of its more powerful variants like
a Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) network.2 It reads
the source sentence one word (or token) at a time, from left to right. At each step, the
RNN updates its internal hidden state, which incorporates information about the current
word and the context from all previous words. After processing the final word of the input
sentence, the encoder’s last hidden state serves as a summary of the entire sentence. This
final vector is often called the context vector (or sometimes a ‘thought vector’). The
central idea is that this single vector encapsulates the complete meaning—the semantic
essence—of the source sentence.

The decoder is the second major component, and its job is to take the context vector
and generate the target sentence word by word. The decoder is also an RNN, and its
initial hidden state is initialized with the context vector produced by the encoder. This
‘primes’ the decoder with the meaning of the sentence it needs to generate. The generation
process then unfolds sequentially:

1. The decoder is first given a special start-of-sentence token (e.g., <start>).

2. Using the context vector and this initial token, it predicts the most probable first
word of the target sentence.

2LSTMs and GRUs are advanced types of RNNs specifically designed to better handle long-range
dependencies in sequences, mitigating issues like the vanishing gradient problem that can affect simpler
RNNs.

CHAPTER 9. MACHINE TRANSLATION 145

3. The word it just generated is then fed back as the input for the next time step.

4. The decoder then predicts the second word, conditioned on both the context vector
and the first word it generated.

5. This auto-regressive process continues, with each newly generated word becoming
the input for the subsequent step, until the model predicts a special end-of-sentence
token (e.g., <end>).

The entire seq2seq model is trained as a single system on a parallel corpus. The net-
work’s goal is to learn to maximize the conditional probability of producing the correct
target sentence Y = (y1, ..., ym) given a source sentence X = (x1, ..., xn). Formally, it
optimizes its parameters to maximize P (Y |X). During training, the model’s output at
each step is compared to the ground-truth word from the training data, and the error
is calculated. This error is then propagated back through the entire network—from the
decoder all the way back through the encoder—to adjust the model’s millions of param-
eters. This end-to-end training allows the model to learn a complex, non-linear mapping
from source text to target text directly, without any need for explicit word alignments or
phrase tables.

While the sequence-to-sequence architecture was a major breakthrough, its initial de-
sign harbored a critical weakness. The encoder is tasked with processing an input of
arbitrary length and compressing its entire semantic content into a single, fixed-length
vector. This vector, sometimes called the context vector or ‘thought vector,’ must encap-
sulate everything the decoder needs to know to generate a correct translation—the words,
their meanings, their relationships, and their order.

This design imposes a severe information bottleneck. Consider the challenge of
summarizing a long, complex sentence versus a short, simple one. A single vector of a
predefined size has a finite capacity to store information. As the length and complexity
of the source sentence increase, the model’s ability to cram all the necessary nuance into
this single representation diminishes. Inevitably, information is lost.

This architectural flaw had a direct and measurable impact: the performance of these
early NMT models degraded significantly as sentence length grew. The model might
successfully translate the first part of a long sentence but ‘forget’ key details or context
from the beginning by the time it starts generating the end of the target sentence. The
decoder is working from a single, static summary and has no way to refer back to the
original source words. This limitation made it clear that a more dynamic way of accessing
the source information was needed, leading directly to the development of the attention
mechanism.

The fixed-length context vector used in early encoder-decoder models, as we have
seen, creates a significant information bottleneck. It forces the model to compress the
entire meaning of a source sentence—regardless of its length or complexity—into a single
vector of a few hundred dimensions. This is an immense burden. A long, nuanced sentence
about political philosophy and a short, simple sentence like ‘The cat sat’ must both be
squeezed into the same fixed-size representation. Unsurprisingly, the performance of these
models degrades sharply as sentence length increases, as information from early in the
sentence is often lost by the time the vector is fully constructed.

To overcome this critical limitation, a powerful and elegant solution was introduced:
the attention mechanism. The central idea is intuitive yet revolutionary: instead of
forcing the decoder to rely on a single, static context vector, we allow it to attend to
different parts of the source sentence at each step of the decoding process. At the moment
it generates the word ‘la’, the French translation of ‘the’, it might need to focus on the
English word ‘The’. When it later generates ‘souris’, it should focus on ‘mouse’. The

CHAPTER 9. MACHINE TRANSLATION 146

Encoder Hidden States

h1 h2 h3

st-1
(Prev. State)

Decoder and Prediction yt

sc
or

e(
s t

-1
, h

j)
αt1=0.1 αt2=0.8 αt3=0.1

Attention Weights (from Softmax)

ct = Σ αtjhj
(Context Vector)

Figure 9.6: The attention mechanism at a single decoder time step. The decoder’s previous
state, s(t-1), ‘attends’ to all encoder hidden states by calculating alignment scores. These
scores are converted via softmax into attention weights (α), which determine each hidden
state’s contribution to the dynamic context vector c(t). The varied thickness of the purple
arrows represents these weights, showing the model focusing heavily on the second hidden
state. This context vector is then used with the decoder state to predict the next word,
y(t).

attention mechanism gives the model a way to learn and implement this dynamic focus
automatically.

At its core, the attention mechanism provides the decoder with access to all of the
encoder’s hidden states (h1, h2, ..., hN) at every decoding time step, t. Instead of using a
pre-computed summary of the source, the decoder actively decides which encoder states
are most relevant for predicting the current target word, yt. It then computes a context-
specific vector based on this decision. This process, visualized in Fig. 9.6, can be broken
down into a few key steps.

First, we need to score how well each encoder hidden state hj aligns with the decoder’s
hidden state from the previous time step, st−1. This score quantifies the relevance of the
j-th source word to the t-th target word we are about to generate. This is accomplished
using an alignment score function, which can be as simple as a dot product or a small
feed-forward neural network that takes both states as input. We can represent this as:

etj = score(st−1, hj)

This gives us a vector of scores, one for each source word position.
Second, these raw alignment scores are normalized into a probability distribution using

the softmax function. The resulting values, αtj , are called the attention weights. Each
weight represents the amount of attention the decoder should place on the j-th source
word when generating the t-th target word. Because they are the output of a softmax
function, these weights conveniently sum to 1 over all source words.

αtj =
exp(etj)∑N
k=1 exp(etk)

Third, a dynamic context vector, ct, is computed as a weighted sum of all the encoder

CHAPTER 9. MACHINE TRANSLATION 147

hidden states. The weights used in this sum are precisely the attention weights, αtj , we
just calculated.

ct =
N∑
j=1

αtjhj

This context vector is a powerful construct. If a particular source word at position j
is deemed highly relevant for the current decoding step, its attention weight αtj will be
high, and its corresponding hidden state hj will dominate the context vector ct. If another
source word is irrelevant, its weight will be near zero, effectively silencing its contribution.

Finally, this tailored context vector ct is combined with the decoder’s current hidden
state, typically by concatenation, and then used to predict the target word yt. The entire
mechanism, from scoring to prediction, is implemented with differentiable operations,
meaning it can be trained end-to-end with backpropagation, just like the rest of the
network.

The introduction of attention was a watershed moment for NMT. By relieving the
encoder of the impossible task of perfect compression, it dramatically improved translation
quality, especially for long sentences. Furthermore, it offered a rare and valuable glimpse
into the model’s inner workings. By visualizing the attention weights αtj as a matrix,
we can see which source words the model ‘looked at’ when generating each target word.
This often reveals plausible, soft alignments between languages, making the model more
interpretable and easier to debug. This ability to dynamically weigh input components
proved so effective that it became the foundational concept for the next generation of
neural architectures.

The abstract concept of the attention mechanism becomes much clearer when visual-
ized. At each step of generating a target word, the decoder calculates a set of attention
weights, one for each word in the source sentence. These weights, which are positive and
sum to one, determine the influence each source word has on the generation of the current
target word. We can arrange these weights into a matrix, where rows correspond to the
generated target words and columns correspond to the source words.

Fig. 9.7 presents a heatmap of such an attention matrix for a sample translation from
French to English. The source sentence is laid out along the x-axis, and the generated
target sentence is along the y-axis. The intensity of the color in each cell (i, j) represents
the attention weight αij , which indicates how much the model focused on the j -th source
word when producing the i-th target word. A brighter cell signifies a higher weight,
meaning a stronger focus.

Notice the strong diagonal pattern in the visualization. This is common for languages
with similar word order, indicating that the model often aligns the n-th target word with
the n-th source word. However, the true power of attention is revealed in the non-diagonal
alignments, which show the model handling differences in grammar and word order. For
instance, in translating the French phrase ‘la voiture verte’ to the English ‘the green car’,
the model must reorder the adjective and noun. When generating the word ‘green’, the
attention mechanism would allow it to place a high weight on the source word ‘verte’,
regardless of their different positions in their respective sentences. This would be visible
as a bright, off-diagonal cell in the matrix.

This ability to dynamically link target words to relevant source words is precisely what
overcomes the fixed-context-vector bottleneck of earlier models. Instead of relying on a
single, compressed summary of the entire input, the decoder has direct, selective access to
the source representation at every step. This not only dramatically improves translation
quality but also offers a valuable form of interpretability. By visualizing attention, we gain
a direct insight into the model’s internal decision-making process, observing how it aligns
words across languages to construct a coherent translation.

CHAPTER 9. MACHINE TRANSLATION 148

la voiture verte est rapide

the

green

car

is

fast

Source Sentence (French)

G
e
n
e
ra
te
d
Ta

rg
e
t
(E
n
g
li
s
h
)

Figure 9.7: A heatmap of an attention matrix for a sample translation from French to
English. The source sentence is on the x-axis and the generated target sentence is on
the y-axis. The brightness of a cell (i, j) indicates the attention weight, showing how
much the model focused on the j-th source word when generating the i-th target word.
The strong off-diagonal alignments for ‘green’/‘verte’ and ‘car’/‘voiture’ demonstrate the
model’s ability to handle word reordering.

While the attention mechanism solved the information bottleneck of simple encoder-
decoder models, the underlying recurrent neural networks (RNNs) still possessed a fun-
damental limitation: their sequential nature. Because the computation for each word
depended on the hidden state of the previous word, the process was inherently difficult to
parallelize, making it slow to train on very large datasets and long sentences. In 2017, a
landmark paper titled ‘Attention Is All You Need’ introduced the Transformer architec-
ture, a new model for NMT that dispensed with recurrence entirely.

The Transformer’s core innovation is a mechanism called self-attention. Instead of
passing information sequentially, self-attention allows every word in the source sentence
to directly look at and weigh the importance of all other words in that same sentence. This
process is repeated in multiple layers, allowing the model to build a deeply contextualized
representation for each word by aggregating information from across the entire input. The
Transformer maintains the familiar encoder-decoder structure, but each component is now
a stack of these self-attention layers rather than a recurrent network.

This architectural shift had two profound consequences. First, by allowing direct con-
nections between any two words, it became exceptionally good at modeling long-range
dependencies. Second, and perhaps more importantly, the removal of recurrence made the
computations massively parallelizable. The representation for every word could be calcu-
lated simultaneously, leading to dramatic reductions in training time on modern hardware
like GPUs. The Transformer’s superior performance and efficiency quickly established it
as the new state-of-the-art for machine translation, and its architecture became the foun-
dational blueprint for the large language models that would come to dominate the field,
as we will see in the final chapter.

The theoretical advantages of Neural Machine Translation, especially the attention
mechanism’s capacity to model long-range dependencies, translate directly into a dra-
matic and observable leap in translation quality. While Statistical Machine Translation

CHAPTER 9. MACHINE TRANSLATION 149

Source Sentence SMT Output NMT Output

The policy, which had been
under discussion for months,
was eventually shot down by
the opposition.

The policy, which was in dis-
cussion for months, was fi-
nally gunned down by the op-
position.

The policy, which had been
under discussion for months,
was ultimately rejected by
the opposition.

Figure 9.8: A comparative table showcasing the qualitative difference between Statistical
Machine Translation (SMT) and Neural Machine Translation (NMT) outputs. The NMT
model correctly interprets the idiomatic phrase ‘shot down’, whereas the SMT model
produces a literal and disfluent translation.

often produces literal and sometimes disjointed translations by stitching together memo-
rized phrases, NMT systems generate text that is significantly more fluent, coherent, and
accurate.

This qualitative gap is starkly illustrated in the comparative example shown in Fig. 9.8.
The English source sentence, ‘The policy, which had been under discussion for months,
was eventually shot down by the opposition,’ presents challenges in its complex syntax
and idiomatic phrasing (‘shot down’).

The SMT output demonstrates the typical weaknesses of the phrase-based approach.
It struggles with the long-distance dependency between ‘The policy’ and ‘was...shot down,’
and it is likely to produce a clumsy, literal translation of the idiom—perhaps as ‘was fired
down’ or ‘was gunned down.’ The result is a grammatically awkward sentence that fails
to convey the correct political meaning and would require significant human post-editing
to be usable.

In contrast, the NMT output reveals a much deeper, more holistic understanding of the
source text. By processing the entire sentence contextually, the model correctly interprets
‘shot down’ as a metaphor for ‘rejected’ or ‘defeated’ and finds an appropriate, non-literal
equivalent in the target language. It smoothly handles the embedded clause, maintaining
the sentence’s logical flow. This ability to move beyond local word and phrase substitutions
to re-express sentence-level meaning is the hallmark of the NMT revolution. It marks the
transition from a mechanical process of fragment replacement to a more nuanced act of
linguistic regeneration.

The evolution from Statistical Machine Translation (SMT) to Neural Machine Trans-
lation (NMT) marks a profound shift in methodology and core philosophy. The SMT
paradigm is one of decomposition. It dissects the translation process into distinct, man-
ageable sub-problems: word alignment, phrase extraction, and decoding, each optimized
separately. Its power comes from combining a translation model, which ensures faithful-
ness to the source, with a language model, which ensures fluency in the target. The system
relies heavily on explicit, count-based statistical tables and carefully engineered features
to guide the search for the best translation.

NMT, in contrast, champions a holistic, end-to-end approach. It replaces the com-
plex pipeline of SMT with a single, large neural network trained to perform the entire
translation task. This model learns to directly map a sequence of source words to a se-
quence of target words without relying on explicit phrase tables or intermediate steps. By
representing language in continuous vector spaces and using mechanisms like attention,
NMT models can capture long-range dependencies and subtle contextual nuances that
were difficult for SMT to manage, leading to more fluent and human-like translations.

Despite the remarkable advances brought by Neural Machine Translation, the field is
far from solved. Significant challenges remain, and exciting new research directions are
constantly emerging. The data-hungry nature of NMT models creates a major bottleneck,
leading to a stark digital divide between high-resource languages with abundant parallel

CHAPTER 9. MACHINE TRANSLATION 150

corpora (like English and French) and the vast majority of the world’s languages, which are
considered low-resource. Current research actively tackles this problem through techniques
like transfer learning, where a model trained on a high-resource pair is fine-tuned on a
smaller low-resource dataset, and unsupervised methods that learn translations using only
monolingual data.

Beyond data availability, several other key challenges persist:

• Domain Mismatch: A model trained on news articles will struggle to translate
legal documents or social media posts. Adapting MT systems to specific domains
and handling noisy, informal text remains a crucial area of work.

• Evaluation: As we have seen, automated metrics like BLEU are an imperfect proxy
for human judgment. They can penalize valid translations that use different phrasing
and often fail to capture subtle nuances of fluency and adequacy. The development
of better evaluation metrics is an ongoing pursuit.

• Bias and Fairness: Like other large models trained on web data, MT systems can
learn and amplify societal biases related to gender, race, and culture. Ensuring fair
and unbiased translations is a critical ethical imperative.

Looking forward, the future of machine translation is likely to be more contextual and
interactive. One of the most promising frontiers is multimodal machine translation, which
aims to incorporate information from other modalities, such as images or audio, into the
translation process. For example, an accompanying image could help a model correctly
disambiguate the word ‘bat’ (animal vs. sports equipment) when translating a sentence.
Another exciting direction is developing controllable translation systems, allowing users to
specify constraints such as formality, tone, or the inclusion of specific terminology. This
would transform MT from a static tool into a dynamic, collaborative assistant, particularly
for professional translators. The quest for perfect translation continues, driving innovation
at the heart of computational linguistics.

Chapter 10

Information Retrieval and
Information Extraction

151

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION152

This chapter focuses on two critical tasks for managing and extracting value from
the vast amounts of text available today: Information Retrieval (IR) and Information
Extraction (IE). While both disciplines aim to satisfy a user’s need for information, their
goals and outputs are fundamentally different.

Information Retrieval is the task of finding a subset of documents from a large collection
that are relevant to a user’s query. This is the classic problem solved by search engines.
When you search for a topic, an IR system sifts through millions of documents to return
a ranked list of the ones most likely to contain the information you seek. The core output
of an IR system is a set of relevant documents.

In contrast, Information Extraction operates at a more granular level. Its goal is not to
retrieve entire documents, but to automatically identify and pull out specific, pre-defined
types of information from within the text. Instead of returning a list of articles, an IE
system outputs structured data, such as filling a database table with names, locations, or
events mentioned in the text. This chapter will delve into the foundational models for
both of these essential fields.

To grasp the fundamental difference between these two fields, consider a practical
scenario. Imagine you are a financial analyst tasked with tracking the performance of a
fictional company, ‘InnovateCorp,’ during the fourth quarter of 2023.

Your first step might involve Information Retrieval. You would use a search engine
with a query like InnovateCorp Q4 2023 earnings. The IR system’s goal is to locate
documents relevant to this query from a vast collection. It would return a ranked list of
results: perhaps the company’s official press release, a news article from a financial publi-
cation, and a detailed regulatory filing. The system has successfully retrieved potentially
relevant sources, but your work is not done. You must now manually read through these
documents to locate the specific figures you need. In short, IR helps you find the right
haystack.

This is where Information Extraction provides a more direct solution. An IE sys-
tem is not concerned with returning entire documents. Instead, it is designed to parse the
text within those documents to identify and pull out specific, predefined types of infor-
mation. Its goal is to turn unstructured prose into structured data. Given the same set
of documents, an IE system would aim to produce a structured output, like a table or a
database entry:

• Company: InnovateCorp

• Fiscal Period: Q4 2023

• Revenue: $15.2 Billion

• Net Income: $2.1 Billion

• Earnings Per Share: $1.35

In this contrast, the core distinction becomes clear. IR systems return documents that
are relevant to a query. IE systems return facts extracted from text. IR helps you find
where the information is, while IE aims to deliver the information itself, structured and
ready for analysis.

At its core, the Information Retrieval (IR) problem is about satisfying a user’s informa-
tion need. We can formally define the classic IR task using three main components. First,
there is a static document collection, which is a set of texts D = {d1, d2, ..., dN} through
which we want to search. Second, a user provides a query, q, which is a representation
of their information need, typically expressed as a short string of keywords.

The objective of an IR system is to process the query q against the collection D and
return a ranked list of documents. This list is ordered by relevance, with the documents

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION153

User Query
Ranked List

of Documents

Document
Collection

Inverted
Index

IR System

Figure 10.1: High-level architecture of a classic Information Retrieval (IR) system. A user
query is processed by the system, which utilizes a document collection and an inverted
index to produce a ranked list of relevant documents.

that the system predicts are most likely to satisfy the user’s need placed at the top. The
high-level architecture of this process, from query input to ranked output, is visualized
in Fig. 10.1. The central challenge, therefore, is to accurately and efficiently model this
notion of relevance. The upcoming sections will explore the fundamental data structures
and algorithms used to accomplish this.

How can a system efficiently find documents containing a query term from a collection
of millions or even billions of texts? A brute-force approach, which involves scanning
every document for the term at query time, is computationally infeasible. The solution
to this problem is a data structure at the heart of nearly all modern search engines: the
inverted index. The core idea is simple and elegant, analogous to the index at the back
of a physical book. Instead of mapping from a document to the terms it contains, an
inverted index maps from a term to the documents that contain it.

An inverted index consists of two main components:

• Dictionary (or Vocabulary): This is a list of all unique terms that appear in the
entire document collection. For fast lookups, the dictionary is typically sorted or
stored in a complex data structure like a B-tree.

• Postings Lists: For every term in the dictionary, there is an associated list of
pointers to the documents that contain that term. Each entry in this list, called a
posting, is typically a document identifier (DocID).

When a single-word query, such as ‘computational’, arrives, the system performs a fast
lookup in the dictionary to find the term. It then retrieves the corresponding postings
list, which immediately provides the set of all relevant documents.

The real power of the inverted index becomes apparent with multi-word queries, such as
"computational" AND "linguistics". The system retrieves the postings list for ‘com-
putational’ and the postings list for ‘linguistics’. It then computes the intersection of
these two lists—the set of DocIDs that appear in both. This operation is vastly more ef-
ficient than scanning every document for both terms. The inverted index trades a slower,

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION154

I. Document Collection

Document ID Content

1 Company growth report.
2 Earnings report shows revenue growth.
3 New company strategy.
4 Quarterly revenue exceeds expectations.

II. Resulting Inverted Index

Token Postings List

company [1, 3]
earnings [2]
exceeds [4]
expectations [4]
growth [1, 2]
new [3]
quarterly [4]
report [1, 2]
revenue [2, 4]
shows [2]
strategy [3]

Figure 10.2: Building an inverted index. The top part shows the source document col-
lection. The bottom part shows the resulting index, mapping each unique term to its
postings list (the documents in which it appears). The example for the term ‘revenue’
with postings list [2, 4] matches the text’s description.

one-time indexing process for extremely fast query resolution, making it the foundational
component for modern Information Retrieval.

To illustrate how an inverted index is built, let’s consider the small collection of four
documents shown in the top half of Fig. 10.2. The process begins by collecting all unique,
normalized tokens from the entire collection to form the dictionary. For our example, this
dictionary would include terms like company, earnings, growth, report, revenue, and so
on.

Next, we iterate through each term in the dictionary and compile its postings list—the
list of all document IDs containing that term. To find the postings for the term ‘revenue’,
we scan the collection and note that it appears in Document 2 and Document 4. Therefore,
its postings list is [2, 4]. This process is repeated for every unique term.

The complete inverted index is shown in the bottom half of Fig. 10.2. It consists of
the dictionary of terms, where each term points to its corresponding postings list. Once
built, this structure allows for extremely fast retrieval. Finding documents that mention
‘revenue’ is now a simple lookup operation, not an expensive scan of every document.

While an inverted index efficiently finds documents containing a query term, it doesn’t
inherently rank them by relevance. To do this, we need a way to quantify the thematic
content of a document. The vector space model (VSM) provides an elegant algebraic
framework for this task by representing documents and queries as numerical vectors in a
high-dimensional space.

In this model, each unique term in the entire document collection corresponds to a
dimension. A document is then represented as a vector, d⃗, where each component of
the vector reflects the importance of the corresponding term within that document. For
example, a document about corporate acquisitions would have large vector components in
the dimensions for terms like ‘acquisition’, ‘merger’, and ‘shares’.

The fundamental insight of the VSM is that proximity in this vector space equates to

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION155

thematic similarity. Documents whose vectors point in a similar direction are considered
semantically related. By also casting the user’s query as a vector, q⃗, we can transform
relevance ranking into a geometric problem: finding the document vectors that are closest
to the query vector.

To represent documents and queries as numerical vectors, we use a foundational data
structure called the term-document matrix. Conceptually, this is a large table where
each row corresponds to a unique term in the entire collection’s vocabulary, and each
column corresponds to a single document. The value in a cell at the intersection of a term
t and a document d quantifies the importance of that term within that document.

In its most basic form, this value is simply the raw frequency of the term. For a
vocabulary of size |V | and a collection of |D| documents, we have a matrix M of size
|V | × |D|. The entry Mtd would be the count of term t in document d. Consequently,
each column of this matrix is the vector representation for a specific document, existing
in a |V |-dimensional space. For instance, if ‘algorithm’ is the 50th term in our vocabulary
and it appears 4 times in Document 12, the value at M50,12 would be 4. While intuitive,
these raw counts are just a starting point; a more sophisticated weighting is needed for an
effective system.

Not all terms in the term-document matrix carry equal weight. A word like ‘the’ might
appear frequently in every document but provides little information about a document’s
specific topic. Conversely, a technical term that appears many times in one document
but is absent from most others is likely a strong indicator of its content. The TF-IDF
(Term Frequency-Inverse Document Frequency) weighting scheme is designed to formalize
this intuition, assigning a numerical score to each term that reflects its importance to a
document within a collection.

TF-IDF is composed of two distinct parts:

• Term Frequency (TF): This measures how often a term t appears in a document
d. A higher frequency implies greater importance within that specific document.
To prevent very frequent terms from overly dominating the score, we often use a
logarithmically scaled frequency. The formula is:

tft,d = log(1 + ft,d)

where ft,d is the raw count of term t in document d.

• Inverse Document Frequency (IDF): This measures how common or rare a term
is across the entire document collection. The intuition is that a term appearing in
many documents is less informative than one appearing in only a few. The IDF
score is high for rare terms and low for common ones. It is calculated as:

idft = log
N

dft

where *N* is the total number of documents in the collection, and dft is the number
of documents that contain the term t (the document frequency).

The final TF-IDF weight for a term t in a document d is the product of these two
components:

wt,d = tft,d × idft

The effect of this calculation is powerful. A term receives a high TF-IDF score if it
appears frequently in a document (high TF) but is rare in the overall collection (high
IDF). These are precisely the terms that best characterize a document’s unique topic.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION156

d2

q

d1

Figure 10.3: A 2D vector space diagram to intuitively explain cosine similarity. The
diagram shows a query vector (‘q’) and two document vectors (‘d1’ and ‘d2’) originating
from the same point. The angle between ‘q’ and ‘d1’ is visibly smaller than the angle
between ‘q’ and ‘d2’, illustrating that ‘d1’ is considered more relevant to the query.

By replacing the raw counts in the term-document matrix with these TF-IDF scores, we
create much more meaningful vectors for use in the vector space model, leading to more
accurate relevance rankings.

With both documents and the query represented as TF-IDF vectors, the task of ranking
becomes a geometric problem: measuring the proximity between the query vector q and
each document vector d. In the vector space model, the standard measure is cosine
similarity. This metric is effective because it measures the angle between two vectors,
making it sensitive to the orientation (the topics) rather than the magnitude (the length
of the documents).

The similarity is calculated as the cosine of the angle θ between the two vectors:

similarity(q,d) = cos(θ) =
q · d

||q|| ||d||
The resulting score ranges from 0 to 1 for non-negative TF-IDF vectors. A score closer to
1 signifies a smaller angle and thus higher conceptual similarity. As illustrated in Fig. 10.3,
the document vector d1 is deemed more relevant to the query q than d2 because the angle
between them is smaller. An IR system computes this similarity score for every document
in the collection and then sorts the documents in descending order to generate the final
ranked list of results.

Once an IR system returns a list of documents, how do we measure its success? The
quality of a search result is not a simple binary judgment. To formally evaluate per-
formance, we rely on metrics that capture different aspects of relevance. The two most
fundamental of these are precision and recall.

Precision answers the question: Of the documents the system retrieved, what fraction
were actually relevant? It is a measure of exactness or fidelity. If every document you see
is on-topic, the system has high precision. Recall, on the other hand, answers: Of all the
relevant documents that exist in the collection, what fraction did the system find? It is
a measure of completeness. If the system found every possible relevant document, it has
high recall.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION157

Relevant DocumentsRetrieved Documents

False Negatives
(relevant, not retrieved)

False Positives
(retrieved, not relevant)

True Positives
(relevant & retrieved)

Figure 10.4: A Venn diagram illustrating the concepts of precision and recall by showing
the overlap between the set of relevant documents and the set of retrieved documents.

These concepts are often visualized using the sets of retrieved and relevant documents,
as shown in Fig. 10.4. To formalize this, we can categorize any document as a True
Positive (relevant and retrieved), a False Positive (retrieved but not relevant), or a False
Negative (relevant but not retrieved). The formulas are then:

• Precision = True Positives
True Positives+False Positives

• Recall = True Positives
True Positives+False Negatives

There is an inherent trade-off between these two metrics. A system designed for
maximum recall could simply return every document in the collection, guaranteeing it
finds all relevant ones (100% recall) but with abysmal precision. Conversely, a cautious
system that returns only a single document it is extremely confident about might achieve
perfect precision but have terrible recall. Balancing this trade-off is a central challenge in
designing IR systems.

Often, there is an inverse relationship between precision and recall; improving one can
hurt the other. This trade-off makes it difficult to compare systems using two separate
numbers. To address this, the F1-score provides a single metric that combines them. The
F1-score is the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

Unlike a simple average, the harmonic mean penalizes extreme values more heavily.
This means a system must achieve both reasonably high precision and high recall to get a
high F1-score. For instance, a system with perfect precision (1.0) but very low recall (0.1)
would have a low F1-score of only about 0.18. This property makes it one of the most
common and robust evaluation metrics in information retrieval.

While precision and recall evaluate an unordered set of documents, most IR systems
produce a ranked list. A good system must place relevant documents at the top. Met-
rics designed for this purpose are crucial, with Mean Average Precision (MAP) being a
standard measure.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION158

MAP is calculated in two stages. First, for a single query, we compute the Average
Precision (AP). This is the average of the precision values at each point in the ranked list
where a relevant document is found. It rewards systems for ranking relevant documents
higher. The formula is:

AP =

∑n
k=1(P (k)× rel(k))

number of relevant documents
Here, P (k) is the precision at rank k, and rel(k) is 1 if the document at rank k is

relevant. Second, the MAP is simply the mean of these AP scores calculated over a large
set of queries.

Let’s consolidate the theoretical concepts of Information Retrieval by building a minia-
ture search engine. Our goal is to rank a small collection of news headlines based on their
relevance to a user query.

Imagine our document collection consists of four headlines:

• D1: ‘The Federal Reserve hinted at another interest rate hike to combat inflation.’

• D2: ‘Global stock markets reacted nervously to the Federal Reserve’s policy state-
ment.’

• D3: ‘A new tech stock surged today after a successful product launch.’

• D4: ‘Market analysts predict a stock hike following the interest rate decision.’

Our first step is pre-processing. We tokenize the text, convert it to lowercase, and
remove common stop words (‘the’, ‘at’, ‘to’, ‘a’, etc.). This process yields a vocabulary of
unique terms. From this, we construct our inverted index, which maps each term to the
documents containing it:

• federal: D1, D2

• reserve: D1, D2

• interest: D1, D4

• rate: D1, D4

• hike: D1, D4

• stock: D2, D3, D4

• market: D2, D4

• ...and so on for every term in the vocabulary.

Next, we transform these documents into numerical vectors using the TF-IDF weight-
ing scheme. We create a term-document matrix where each cell will hold the TF-IDF score
for a term in a specific document. For example, let’s calculate the weight for the term
federal in D1. The Term Frequency (TF) is high, as it appears once in a short document.
The Inverse Document Frequency (IDF) is calculated as log(Nnt

), where N is the total
number of documents (4) and nt is the number of documents containing the term federal
(2). Thus, the IDF is log(42) ≈ 0.301. The final TF-IDF score combines these two values.
In contrast, the term stock has a lower IDF of log(43) ≈ 0.125 because it is more common in
our collection. This process is repeated for every term in every document, resulting in four
vectors, vD1, vD2, vD3, vD4, in a high-dimensional space where each dimension corresponds
to a term in our vocabulary.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION159

Now, a user submits the query: ‘Federal Reserve stock’. We apply the same pre-
processing and TF-IDF vectorization process to the query itself, creating a query vector,
vq. The final step is to measure the relevance between the query and each document. We
do this by calculating the cosine similarity, which measures the angle between the query
vector and each document vector. The formula is:

similarity(q, d) = cos(θ) =
vq · vd

∥vq∥∥vd∥

A higher score (closer to 1) indicates a smaller angle and thus greater similarity. After
performing these calculations, we might get the following hypothetical scores:

• similarity(q, D2): 0.91

• similarity(q, D1): 0.78

• similarity(q, D4): 0.45

• similarity(q, D3): 0.31

Based on these scores, our search engine would return the ranked list of documents:
[D2, D1, D4, D3]. This simple case study demonstrates the complete IR pipeline, from
processing raw text with an inverted index to representing documents in a vector space
and ranking them by relevance to a query.

While Information Retrieval systems excel at finding relevant documents from a large
collection, they typically stop there, leaving the user to read the document to find the
specific facts they need. We now shift our focus to a different, though related, task:
Information Extraction (IE).

The goal of Information Extraction is to automatically identify and pull structured
information from unstructured or semi-structured text. Instead of returning an entire
document, an IE system returns specific pieces of data formatted for direct use in a
database or spreadsheet. Where IR might return a dozen news articles about corporate
mergers, an IE system would process those articles to extract the specific names of the
acquiring company, the company being acquired, and the monetary value of the deal.
This process transforms a sea of free-form text into a structured, queryable knowledge
base, turning raw prose into actionable data. The subsequent sections will detail the core
subtasks required to build such a system.

To make the goal of Information Extraction more concrete, consider the difference
between finding a document and understanding its contents. While an IR system would
successfully retrieve a news article about a corporate acquisition, an IE system would
process that same article to pull out the key facts. Imagine the system encounters the fol-
lowing text in a press release: ‘Global Tech Inc. announced today its definitive agreement
to acquire Innovate Solutions for a staggering $2.5 billion.’

The objective of IE is to automatically populate a structured record, like a database
table, from this unstructured sentence. As shown in Fig. 10.5, the system must identify
specific text fragments and map them to predefined slots. It needs to recognize that
‘Global Tech Inc.’ is the Acquirer, ‘Innovate Solutions’ is the Target Company, and ‘$2.5
billion’ is the Acquisition Price. This process effectively transforms a block of prose into a
row of data that can be easily queried, aggregated, and analyzed. The core challenge lies
in building models that can perform this mapping accurately across countless variations
in phrasing and sentence structure.

With the overall goal of Information Extraction established, we begin with its most
fundamental subtask: Named Entity Recognition (NER). The objective of NER is
to locate and classify named entities—mentions of real-world objects—into pre-defined

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION160

Unstructured Text

"Global Tech Inc.announced today

its definitive agreement to acquire

Innovate Solutionsfor a

staggering$2.5 billion."

Structured Output

Acquirer: Global Tech Inc.

Target Company: Innovate Solutions

Acquisition Price: $2.5 billion

Figure 10.5: Illustration of Information Extraction (IE). An IE system processes an un-
structured sentence about a corporate acquisition (left) to identify and extract key pieces
of information, populating them into a structured data record (right). Arrows indicate
the mapping from text fragments to their corresponding data slots.

categories. These entities are typically rigid designators, meaning they refer to a specific,
unique thing. While the set of categories can be tailored to any domain, a common starting
point includes:

• PER: Person (e.g., Ada Lovelace, the CEO)

• ORG: Organization (e.g., Google, The United Nations)

• LOC: Location (e.g., Silicon Valley, Mount Everest)

• GPE: Geopolitical Entity (e.g., France, Tokyo)

Essentially, NER is a classification task performed on spans of text. For instance,
given the sentence, ‘In 2014, Amazon acquired Twitch,’ an NER system would identify
Amazon as an ORG and Twitch as another ORG. By identifying these key players, NER
provides the foundational building blocks—the nouns of an information database—upon
which more complex tasks, such as Relation Extraction, can be built. This process is
the first crucial step in transforming a sea of unstructured text into structured, queryable
knowledge.

Before the widespread adoption of statistical methods, early approaches to NER re-
lied on human expertise and manually curated resources. Two of the most prominent
techniques from this era were the use of gazetteers and hand-crafted rules.

A gazetteer is essentially a large dictionary or pre-defined list of specific entity names.
For instance, an NER system could be equipped with separate gazetteers containing:

• All countries and major cities in the world (for LOCATIONS).

• A list of well-known corporations (for ORGANIZATIONS).

• Common first names and surnames (for PERSONS).

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION161

B-PER

Maria

I-PER

Rossi

O

moved

O

to

B-LOC

Rome

O

.
Figure 10.6: Named Entity Recognition (NER) framed as a sequence labeling task using
the BIO encoding scheme. Each token in the input sentence is assigned a tag indicating
whether it is at the beginning (B-TYPE), inside (I-TYPE), or outside (O) of a named
entity.

The system performs a simple lookup, matching sequences of words in the text against
entries in these lists. If a match is found, the corresponding entity type is assigned. The
primary limitation of this approach is coverage; a gazetteer is only as good as its contents
and will fail to identify any new or unlisted entities.

To capture more general patterns, developers wrote hand-crafted rules, often using the
power of regular expressions (as discussed in Chapter 2). These rules encode orthographic
and contextual clues. A simple rule might state that any capitalized word followed imme-
diately by ‘Inc.’ or ‘Corp.’ should be tagged as an ORGANIZATION. Another rule could
identify a title like ‘Mr.’ or ‘Dr.’ followed by a capitalized name as a PERSON. While ef-
fective in specific, well-understood domains, rule-based systems are brittle, labor-intensive
to create, and difficult to maintain or adapt to new types of text.

While rule-based systems are intuitive, they are often brittle and require significant
manual effort to create and maintain. Modern approaches have largely shifted towards
statistical models by framing NER as a sequence labeling task. This paradigm should be
familiar, as it is the same fundamental approach we used for Part-of-Speech tagging in
Chapter 5. The goal is to assign a label from a predefined set of tags to each token in an
input sequence.

However, NER presents a challenge not found in POS tagging: entities can span
multiple tokens. For instance, in ‘Maria Rossi,’ we need to know that both words refer to
a single entity. A simple tag set like {PER, LOC, ORG} is insufficient. To address this, we
use a more expressive tagging scheme, the most common of which is the BIO encoding:

• B-TYPE: Marks the Beginning of an entity of a certain type.

• I-TYPE: Marks the Inside of an entity, used for the second and subsequent tokens.

• O: Marks a token as being Outside any named entity.

This scheme allows a model to explicitly mark the boundaries of multi-word entities.
As shown in Fig. 10.6, the sentence ‘Maria Rossi moved to Rome.’ is transformed into
a sequence of token-tag pairs. The token Maria is labeled B-PER as it begins a person
entity, while Rossi is labeled I-PER, indicating it is inside the same person entity. The
single-word entity Rome is tagged with B-LOC1, and the remaining tokens are tagged with
O.

1Note that for single-token entities, the B- tag is used by convention. There is no corresponding I-
tag.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION162

By converting raw text into this labeled sequence format, we can leverage powerful
machine learning algorithms. Models like Hidden Markov Models (HMMs), Conditional
Random Fields (CRFs), and modern neural networks can be trained on annotated corpora
to learn how to predict the most probable sequence of BIO tags for a new, unseen sentence.
These models make their predictions by learning from the features of the words themselves
and the context in which they appear.

For a statistical model to perform Named Entity Recognition, it cannot rely on the
word itself; it needs descriptive clues, or features, about the word and its environment.
These features are the evidence the model uses to make its classification decisions. A rich
set of features is crucial for building an accurate NER system.

Common features can be grouped into several categories:

• Word-Level Features: These capture information internal to the word token.

– Word Shape: Abstracts away from the specific word to its orthographic pattern.
For instance, Apple might have the shape Xxxxx, IBM would be XXXX, and
12/03/2024 could be dd/dd/dddd. This helps the model generalize to unseen
words that follow common capitalization or formatting patterns for entities.

– Affixes: Prefixes and suffixes of a word (e.g., -berg, -ton, -shire) can be
strong indicators of names or locations.

– Part-of-Speech Tag: The word’s grammatical category is a powerful feature. A
proper noun tag (NNP in the Penn Treebank tagset) is a very strong signal for
an entity.

• Contextual Features: These look at the words surrounding the target token.

– Surrounding Words: The identity of the previous and next few words (e.g.,
the two words before and two words after) provides immediate context. The
word Washington is more likely a person if preceded by Mr. and a location if
preceded by in.

– Surrounding POS Tags: Similarly, the POS tags of neighboring words are also
highly informative.

• Gazetteer Features: This involves using pre-existing lists of entities, known as
gazetteers. A simple binary feature can be created: ‘Is this word present in a list of
known U.S. cities?’ This allows the model to incorporate external world knowledge
directly.

Identifying named entities is a crucial first step, but it often leaves us with a collection
of disconnected labels. To truly understand a text, we must uncover how these entities
relate to one another. This is the goal of Relation Extraction (RE): the task of
identifying and categorizing the specific semantic relationships that exist between the
entities found by an NER system. The objective is to convert unstructured text into
structured, relational data.

Typically, these relationships are represented as tuples, often of the form (entity1,
relation_type, entity2). For instance, from the sentence ‘Tesla, a company based in
Austin, announced a new factory,’ an RE system should be able to identify the LocatedIn ⌋

(Tesla, Austin) relation. Other examples of target relations could include WorksFor ⌋

(Person, Organization) or Acquired(Company, Company). By transforming unstruc-
tured sentences into a set of such relational facts, RE systems build a scaffold of knowledge
that can be used to populate databases, construct knowledge graphs, or answer complex
questions about the information contained within a text corpus.

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION163

Once entities have been identified, the simplest way to find relations between them is to
search for recurring patterns in the text. These pattern-based approaches, while straight-
forward, can be surprisingly effective, especially in domains with regular, conventional
language like news reports.

The most direct method involves applying regular expressions over the raw text string.
After an NER system has tagged entities, we can search for specific lexical patterns be-
tween them. For instance, a pattern like (ORGANIZATION) acquired (ORGANIZATION)
is a strong indicator of an acquisition relationship. Similarly, (PERSON) , CEO of ⌋

(ORGANIZATION) clearly signals an is-CEO-of relation. The main weakness of this ap-
proach is its brittleness; a slight variation in phrasing, such as ‘the acquisition of Y by X,’
would fail to match the initial pattern.

A more robust technique uses patterns over syntactic structures rather than linear
text. By first parsing a sentence to get its dependency graph (as discussed in Chapter
6), we can identify relations based on the dependency path between two entities. For the
sentence ‘Steve Jobs founded Apple in Cupertino,’ the dependency path between Jobs and
Apple might be represented as:

Jobs <-nsubj- founded -dobj-> Apple
This pattern, which captures the grammatical subject-verb-object relationship, is far

more general. It can successfully identify the founded_by relation in various syntactic
constructions like ‘Apple was founded by Steve Jobs’ or ‘In 1976, Jobs, along with Wozniak,
founded Apple,’ because the core dependency structure remains consistent. These methods
provide a strong baseline for relation extraction, often used to create high-precision rules
or to generate training data for more advanced models.

While pattern-based systems are effective, they can be brittle and require manual
effort. A more robust and generalizable approach is to use supervised machine learning,
which frames relation extraction as a classification problem. The goal is to train a model
that can predict the correct relation type for any given pair of entities, (e1, e2), within a
sentence.

This process requires a corpus annotated with entities and the relations between them.
For each sentence containing a marked entity pair, we extract a feature vector that rep-
resents the pair and its context. A classifier, such as a Support Vector Machine (SVM)
or Logistic Regression model, is then trained on these vectors and their corresponding
relation labels. The set of possible labels includes all pre-defined relation types (e.g.,
Located_In, Founded_By) plus a crucial No_Relation label for pairs that are co-located
in a sentence but are not semantically related.

Common features used for this task include:

• Entity-based features: The text of the entities, their types (e.g., PERSON, OR-
GANIZATION), and their order in the sentence.

• Contextual features: The sequence of words and their Part-of-Speech tags be-
tween the two entities. The words immediately preceding e1 and following e2 are
also often included.

• Syntactic features: The dependency path between the two entities in the sen-
tence’s parse tree. This is a particularly powerful feature, as it captures the gram-
matical relationship directly, abstracting away from the specific surface words.

Once trained, the model can be applied to new, unseen text to identify and classify
relationships between entities.

To make this concrete, let’s illustrate how relations are extracted from a biographical
text. Consider the sentence:

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION164

After leaving Atari, Steve Jobs co-founded Apple with Steve Wozniak in 1976.
First, a Named Entity Recognition (NER) system would identify the entities: [PER

Steve Jobs], [ORG Apple], and [PER Steve Wozniak]. The relation extraction task
then processes pairs of these entities.

For the pair (Steve Jobs, Apple), a pattern-based system could use a simple rule that
looks for the verb ‘found’ (or its variants) between a PER and an ORG entity, triggering
the extraction. A supervised machine learning classifier, in contrast, would convert the
context—the words ‘co-founded’ and ‘with’, their POS tags, and the syntactic path be-
tween the entities—into a feature vector. This vector would then be fed into a model
trained to predict relation types.

In either case, the system would ideally extract the structured fact founded_by ⌋

(Apple, Steve Jobs). Notice that the same sentence also yields founded_by(Apple,
Steve Wozniak), demonstrating how multiple relations can be harvested from a single
piece of text.

To see Information Extraction in action, let’s consider a practical case study: automat-
ically populating a knowledge base of corporate executives and their roles from financial
news reports. The goal is to create a structured database that can answer queries like
‘Who is the CEO of InnovateCorp?’ or ‘List all executives at TechSolutions.’

Our input is a stream of unstructured text from news articles:

• ‘Following the quarterly report, Jane Doe, the newly appointed Chief Financial
Officer of InnovateCorp, presented the financial outlook.’

• ‘Meanwhile, John Smith will be stepping down as Chief Operating Officer at rival
firm TechSolutions.’

• ‘InnovateCorp’s founder, Emily Chen, remains on the board.’

An IE pipeline would process this text in two main stages. First, Named Entity Recog-
nition (NER) identifies the key entities. The system would tag the text as follows:

• Jane Doe (PERSON), Chief Financial Officer (ROLE), InnovateCorp (ORGA-
NIZATION)

• John Smith (PERSON), Chief Operating Officer (ROLE), TechSolutions (OR-
GANIZATION)

• InnovateCorp (ORGANIZATION), Emily Chen (PERSON)

Next, the Relation Extraction stage analyzes the context surrounding these entities to
identify relationships between them. It looks for linguistic patterns like ‘...[PERSON], the
[ROLE] of [ORGANIZATION]...’ or ‘[ORGANIZATION]’s founder, [PERSON]...’. From
our examples, the system would extract a set of structured relational triples:

• (Jane Doe, is_cfo_of, InnovateCorp)

• (John Smith, was_coo_of, TechSolutions)

• (Emily Chen, is_founder_of, InnovateCorp)

These triples are then added to our knowledge base. As the system processes thousands
of articles, it builds a rich, interconnected graph of people, their roles, and their affiliations.
This task is challenging; the system must handle ambiguity (many people named John
Smith), track changes in roles over time, and resolve coreferences (e.g., understanding that
‘she later joined the board’ refers to Jane Doe). Nonetheless, this application demonstrates

CHAPTER 10. INFORMATION RETRIEVAL AND INFORMATION EXTRACTION165

Aspect Information Retrieval Information Extraction

Goal Find relevant documents Extract structured facts
Output Ranked list of documents Filled database records
Scope Document-level Sub-document level

Figure 10.7: A summary of the core differences between Information Retrieval and Infor-
mation Extraction.

the core power of IE: transforming vast quantities of messy, unstructured text into a
valuable, queryable asset.

Having explored both Information Retrieval and Information Extraction, we can now
synthesize their relationship. The fundamental differences between them, summarized
concisely in Fig. 10.7, are critical. At its core, IR answers the question, ‘Which documents
are about my topic?’ Its goal is discovery, and its output is a ranked list of documents.
In contrast, IE answers the question, ‘What specific facts are in this text?’ Its goal
is structuring, and its output is structured data, such as filled database records or a
knowledge graph.

Despite these distinct objectives, IR and IE are highly complementary and are often
combined in a powerful pipeline. A typical workflow begins with an IR system retrieving
a set of relevant documents from a vast corpus—for example, finding all articles about
company acquisitions. This step acts as a coarse filter, dramatically reducing the search
space. Subsequently, an IE system processes this smaller, topic-focused collection to ex-
tract precise, structured details like the acquirer, the target, and the acquisition price for
each event. This synergistic process efficiently transforms a broad information need into a
structured, queryable knowledge base, highlighting the practical interplay between these
two essential fields.

While the statistical and rule-based methods described in this chapter represent the
foundational principles of Information Retrieval and Information Extraction, the field has
been profoundly reshaped by modern deep learning. These techniques have moved beyond
the limitations of sparse, keyword-based representations and manual feature engineering,
setting a new standard for performance.

In Information Retrieval, the paradigm has shifted from sparse TF-IDF vectors to
dense vector representations, or embeddings, generated by large neural models. This ap-
proach, often called dense retrieval, allows search systems to move beyond simple keyword
matching and capture the semantic intent behind a query. A search for ‘films about the
US Civil War’ can thus intelligently match a document titled ‘A historical drama on the
conflict between North and South’ even without significant term overlap.

For Information Extraction, transformer-based models like BERT (which we will ex-
plore in Chapter 12) have become the state-of-the-art. By pre-training on vast amounts
of text, these models learn rich, contextual representations of words. When fine-tuned
for tasks like Named Entity Recognition or Relation Extraction, they consistently out-
perform older systems that rely on hand-crafted features like word shape or gazetteers.
This powerful contextual understanding enables them to accurately identify entities and
their relationships with unprecedented accuracy, pushing the boundaries of what can be
automatically structured from raw text.

Chapter 11

Sentiment Analysis and Opinion
Mining

166

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 167

This chapter introduces sentiment analysis, the computational task of identifying and
extracting opinions, sentiments, and emotions from text data.1 While previous chapters
often focused on the objective, factual content of language, our focus now shifts to its
subjective dimension. The core goal is to automatically determine the author’s attitude,
evaluation, or emotional state concerning a particular topic or entity.

The most common task in sentiment analysis is determining a text’s polarity : is the
expressed opinion positive, negative, or neutral? This seemingly simple classification pow-
ers countless applications. As we will see, the immense volume of user-generated content
on the web—from product reviews and social media posts to political commentary—has
made sentiment analysis an indispensable tool for understanding public opinion at scale.

The practical impact of sentiment analysis is vast, touching nearly every industry that
deals with human-generated text. Its core value lies in transforming massive volumes of
unstructured opinions into structured, actionable data, enabling automated, large-scale
analysis that would be impossible for humans to perform manually. This capability pro-
vides powerful insights for decision-making across numerous domains.

Key application areas include:

• Business Intelligence: Companies systematically process customer feedback from
product reviews, support tickets, and surveys. This helps them to monitor brand
perception, track customer satisfaction over time, and quickly identify product or
service flaws.

• Social and Political Analysis: Political campaigns and social scientists gauge
public opinion on candidates and policies by analyzing millions of posts on social
media platforms. This provides a real-time pulse on public mood and reaction to
events.

• Financial Markets: Analysts sift through news articles and investor forums to
predict market trends, a practice known as financial sentiment analysis, by capturing
the mood surrounding specific stocks or the economy as a whole.

• Healthcare: Researchers can analyze patient narratives from online forums or re-
views to understand real-world experiences with treatments and medical services.

This chapter will guide you through the core methodologies for sentiment analysis,
charting a course from transparent, rule-based systems to more complex, data-driven
models. Our exploration begins with the most intuitive approach: lexicon-based methods.
These techniques operate on a simple principle, using pre-compiled dictionaries of words
with associated sentiment scores to ‘tally up’ the overall feeling of a text.

We will then transition to more powerful and adaptable techniques based on supervised
machine learning. This paradigm reframes sentiment analysis as a classification task. A
model is trained to predict sentiment from a large corpus of pre-labeled examples (e.g.,
positive or negative reviews). This section will cover the classic machine learning pipeline,
from feature extraction to training classifiers, and briefly introduce how modern neural
networks are applied to the task.

Before classifying sentiment, we must first decide on the scope of the text to analyze.
Sentiment analysis is not a monolithic task; it operates at different levels of granularity,
and the appropriate level depends on the required detail. We can distinguish three main
levels:

1The terms sentiment analysis and opinion mining are often used interchangeably, and we will follow
that convention in this chapter.

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 168

"The location was perfect, but the room was a bit noisy. Overall, a good stay."

1. Document-Level
(Entire review)

Positive

2. Sentence-Level
(By clause/sentence)

"The location was perfect..."

Positive

"...the room was a bit noisy."

Negative

3. Aspect-Based
(By specific feature)

Aspect: 'location'

Sentiment: Positive ("perfect")

Aspect: 'room'

Sentiment: Negative ("noisy")

Figure 11.1: A diagram illustrating the three levels of sentiment analysis: document-level,
sentence-level, and aspect-based, using a hotel review as an example.

• Document-Level: This is the broadest scope. The goal is to classify the overall
sentiment of an entire document, such as a product review or a blog post. It assumes
the text expresses a single, primary opinion. For instance, is a movie review, taken
as a whole, positive, negative, or neutral?

• Sentence-Level: This level refines the analysis by determining the sentiment of
each individual sentence. It can capture nuances that document-level analysis misses,
as a single review might contain both positive and negative statements about differ-
ent things.

• Aspect-Based (or Fine-Grained): This is the most detailed level. It moves
beyond a single polarity to identify opinions about specific aspects or features of
an entity. For a hotel review, it would identify the sentiment towards the ‘service’
separately from the ‘cleanliness’ or the ‘location’.

The choice of level directly influences the complexity of the task and the specificity of
the insights gained.

To make these distinctions concrete, consider a typical hotel review, which we can
analyze at each of the three levels as illustrated in Fig. 11.1.

‘The location was perfect, but the room was a bit noisy. Overall, a good stay.’
The insights derived depend entirely on the chosen granularity:

1. Document-Level: At the coarsest level, a model considers the entire text as a
single document. Influenced by the phrase ‘a good stay,’ it would likely assign a
single, overarching Positive polarity to the review. This gives a general summary
but obscures important details.

2. Sentence-Level: Here, the review is broken down into its constituent sentences or
clauses. A system would classify ‘The location was perfect’ as Positive and ‘the room
was a bit noisy’ as Negative. This reveals the conflicting opinions present within the
same review.

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 169

3. Aspect-Based Level: This most fine-grained analysis links sentiment directly to
specific features, or aspects, of the hotel. The model identifies that the sentiment
towards the aspect ‘location’ is Positive (‘perfect’), while the sentiment towards
the aspect ‘room’ is Negative (‘noisy’). This level provides the most specific and
actionable feedback.

The first major approach we will cover is the lexicon-based method. This technique
is intuitive and powerful, operating without the need for model training on labeled data.
At its core, this method relies on a pre-compiled sentiment lexicon—essentially a large
dictionary where individual words and phrases are tagged with a prior sentiment polarity.
This polarity can be a simple categorical label (e.g., positive, negative, neutral) or a
numerical score indicating sentiment intensity.

For instance, a lexicon might assign numerical scores such as:

• "wonderful": +2

• "terrible": -2

• "adequate": +0.5

• "ordinary": 0

The sentiment of a given text is determined by first tokenizing it into words and then
aggregating the polarity scores of the words found in the lexicon. A common aggregation
function is a simple sum. Let S(T) be the sentiment score for a text T composed of words
w1, w2, . . . , wn. A basic model would be:

S(T) =

n∑
i=1

polarity(wi)

If the final score S(T) is above a positive threshold, the text is classified as positive; if
below a negative threshold, it’s deemed negative.

A variety of pre-compiled sentiment lexicons are available, each constructed differently
and offering unique properties. Among the most well-known are the MPQA Subjectivity
Lexicon and SentiWordNet.

The MPQA Subjectivity Lexicon was created through extensive manual annota-
tion. It contains over 8,000 words, each tagged with its polarity (positive, negative, or
neutral) and its subjectivity strength (strong or weak). For example, the word excel-
lent is tagged as strong-positive, while adequate might be weak-positive. Its direct,
human-curated labels make it a reliable and straightforward resource.

In contrast, SentiWordNet is a resource built on top of the WordNet lexical database.
Instead of labeling individual words, it assigns three scores to each synset (a group of
synonymous words representing a single concept): positivity, negativity, and objectivity.
These three scores for any given synset always sum to 1.0. For instance, the primary sense
of gripping might be assigned {Positive: 0.75, Negative: 0.0, Objective: 0.25}.
This structure provides a more nuanced view, acknowledging that a word’s sentiment can
depend on its specific meaning in context.

The fundamental algorithm for lexicon-based sentiment analysis is both intuitive and
computationally efficient. It operates by aggregating the polarity of individual words to
determine the overall sentiment of a text, a process summarized visually in Fig. 11.2. The
procedure can be broken down into four main steps:

1. Tokenization: First, the input text is segmented into a list of words, or tokens.

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 170

Input Text

Tokenize Text into Words

For each word, look up polarity
in Sentiment Lexicon

(e.g., +1, -1, 0)

Aggregate scores for all words
(e.g., Summation)

Output Sentiment Class
(Positive/Negative/Neutral)

Figure 11.2: A flowchart diagram illustrating the steps of a simple lexicon-based sentiment
analysis algorithm, from tokenization to classification.

2. Polarity Scoring: Each token is looked up in the sentiment lexicon. If the word
is present, its pre-assigned polarity score is retrieved (e.g., +1 for positive, -1 for
negative). Words not found in the lexicon are typically assigned a neutral score of
0.

3. Aggregation: The scores for all tokens in the text are combined, usually through
simple summation, to produce a final sentiment score. This is calculated as: Stext =∑n

i=1 polarity(wi) where wi is the i-th word in the n-word text.

4. Classification: The final aggregated score, Stext, is then compared against a thresh-
old to assign a category. For instance:

• Positive if Stext > 0

• Negative if Stext < 0

• Neutral if Stext = 0

This method provides a transparent and easily implemented baseline for sentiment
classification, serving as a valuable first approach before moving to more complex models.

To illustrate, let’s calculate the sentiment of a short movie review using this aggregation
method. Consider the sentence: ‘The acting was brilliant and the story was truly amazing,
but the ending felt a bit predictable.’

First, we consult a simple sentiment lexicon where words are assigned polarity scores.
For this example, we’ll use +1 for positive, -1 for negative, and 0 for neutral or out-of-
lexicon words.2 Our lexicon might contain:

• brilliant: +1

• amazing: +1

• predictable: -1
2In practice, stop words like ‘the’, ‘was’, and ‘a’ are often filtered out, and words not found in the

lexicon are ignored. We treat them as having a score of 0 for simplicity.

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 171

The overall sentiment score, S, for the review is the sum of the polarity scores, P (wi),
for each relevant word wi:

S =
∑

wi∈review

P (wi)

For our sentence, the calculation is:

P (brilliant) + P (amazing) + P (predictable) = (+1) + (+1) + (−1) = +1

The final score of +1 is positive, so the model classifies the review as having a positive
overall sentiment. This simple approach effectively captures the dominant opinion despite
the presence of a negative term.

While elegant in their simplicity, lexicon-based methods face significant challenges that
limit their accuracy in real-world scenarios. Their reliance on context-free word scores
means they often fail to capture the nuances of human language. Key difficulties include:

• Handling Negation. A simple negation word like ‘not’ or ‘never’ can completely
reverse the polarity of a subsequent phrase. For instance, in ‘The movie was not
good,’ a basic algorithm might incorrectly register a positive sentiment from the word
‘good’ while failing to account for the critical negation that inverts its meaning.

• Accounting for Intensifiers. Language is filled with modifiers that strengthen
or weaken sentiment. Words like ‘very’ or ‘extremely’ amplify polarity (e.g., ‘very
happy’), while words like ‘slightly’ or ‘barely’ diminish it. Simple lexicon lookups
that assign a fixed score to each word often ignore the crucial impact of these adverbs.

• Adapting to Domain-Specific Context. The sentiment of a word can be highly
dependent on its domain. The word ‘unpredictable’ is likely positive when describing
a thriller novel’s plot but negative for a car’s braking system. A general-purpose
lexicon will fail to capture these vital domain-specific meanings.

Case Study: E-commerce Product LaunchConsider an e-commerce company, Inno-
vateTech, launching a new smart speaker. To gauge customer reaction in real-time, they
need to analyze a high volume of tweets and on-site product reviews. Building a super-
vised machine learning model would require time and labeled data they don’t yet have.
Instead, they rapidly deploy a lexicon-based system.

The system ingests incoming feedback, tokenizes the text, and calculates a sentiment
score for each comment by summing the polarities of its words from a general-purpose
lexicon. A simple dashboard visualizes the aggregate sentiment. If the score trends sharply
negative, the product team is immediately alerted. This enables them to pinpoint and
address specific issues—like a software bug or unexpected shipping delays—long before
these problems would impact sales figures, providing an invaluable and low-cost early
warning system.

While lexicon-based methods provide a strong and interpretable baseline, they can
be rigid and struggle with domain-specific language or subtle contexts. A more powerful
and adaptable alternative is to frame sentiment analysis as a supervised machine learning
problem. In this paradigm, instead of providing the machine with a dictionary of senti-
mental words, we provide it with a large corpus of texts that have already been labeled
with the correct sentiment.

The task is thus transformed into a classic text classification problem. The model’s
objective is to learn a function that maps an input text (e.g., a movie review) to a pre-
defined sentiment category such as positive, negative, or neutral. During a ‘training’ phase,

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 172

Document the movie was good boring

‘The movie was good’ 1 1 1 1 0
‘The movie was boring’ 1 1 1 0 1

Figure 11.3: An illustration of the Bag-of-Words (BoW) feature extraction process. Two
sentences are converted into sparse numerical vectors based on the word counts from a
combined vocabulary. Most values are zero for any given document, a characteristic of
BoW representations.

a machine learning algorithm examines thousands or even millions of these labeled exam-
ples. It automatically learns to identify the textual features—words, phrases, and their
combinations—that are predictive of each sentiment class. For instance, it might learn
that words like ‘brilliant’ and ‘amazing’ strongly correlate with a positive label, while ‘dis-
appointing’ and ‘awful’ suggest a negative one, without being explicitly told the polarity
of these words. The key is that the model discovers these associations from the data. The
ultimate goal is to produce a trained classifier that can generalize from these examples to
accurately predict the sentiment of new, unseen text.

For supervised machine learning to work, the model needs a large corpus of examples
where the correct answer—in this case, the sentiment label—is already known. This
collection of labeled texts is called the training dataset. While one could manually pay
human annotators to label thousands of documents as positive or negative, this process is
incredibly slow and expensive.

A far more common and efficient strategy is to find data where labels already exist
as a natural byproduct. Online reviews are a perfect source. A product review on an
e-commerce site or a movie review on a platform like IMDb is typically accompanied by a
star rating (e.g., 1 to 5 stars). We can use this explicit rating as a proxy for the sentiment
label. A common heuristic for creating a binary classification dataset is:

• Reviews with 4 or 5 stars are automatically assigned a positive label.

• Reviews with 1 or 2 stars are automatically assigned a negative label.

Notice that 3-star reviews are often discarded in this process. They can represent
neutral sentiment, mixed opinions, or other ambiguities, and removing them creates a
cleaner training signal for the model. This method allows for the rapid creation of massive
datasets, where each instance is a pair (d, c) consisting of a document d (the review text)
and its derived class label c (positive or negative).

Machine learning algorithms operate on numerical data, not raw text. Therefore, a
crucial step in building a supervised sentiment classifier is to convert text documents into
fixed-length numerical feature vectors. This process is known as feature extraction or
vectorization.

The most common and intuitive approach is the bag-of-words (BoW) model. This
model represents text by disregarding grammar and word order, treating it as an unordered
collection—or ‘bag’—of its words. The process involves two steps: first, a vocabulary of
all unique words in the entire training corpus is compiled. Second, each document is
converted into a vector with the same length as the vocabulary. Each dimension of the
vector corresponds to a unique word, and its value is typically the frequency (count) of
that word in the document. This transformation is illustrated in Fig. 11.3, which shows
how two sentences are converted into sparse vectors where most values are zero.

A limitation of BoW is that very common words (e.g., ‘the,’ ‘is,’ ‘a’) dominate the
frequency counts but often carry little semantic weight. An effective alternative is the

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 173

Term Frequency-Inverse Document Frequency (TF-IDF) weighting scheme. TF-
IDF evaluates how important a word is to a document within a collection. It is the product
of two statistics:

• Term Frequency (TF): Measures how frequently a term t appears in a document
d. tf(t, d)

• Inverse Document Frequency (IDF): Measures how informative a term is by
down-weighting common terms. It is calculated as the logarithm of the total num-
ber of documents |D| divided by the number of documents containing the term t.
idf(t,D) = log |D|

|{d∈D:t∈d}|

The resulting TF-IDF score, tfidf(t, d,D) = tf(t, d) × idf(t,D), replaces the raw
counts in the feature vector. This gives higher weight to terms that are frequent in a
specific document but rare across the entire corpus, making them more discriminative for
classification. These resulting vectors, whether from BoW or TF-IDF, serve as the input
for training a classification model.

Once our text is represented as numerical feature vectors, the task of sentiment clas-
sification transforms into a standard supervised machine learning problem. We can feed
these vectors into any number of classification algorithms to train a model that learns to
distinguish between different sentiment polarities. We will briefly overview two classic and
highly effective models for this task: Naive Bayes and Support Vector Machines.

The Naive Bayes classifier is a simple yet powerful probabilistic model based on
Bayes’ theorem. It calculates the probability of a document belonging to a class (e.g.,
positive or negative) given its features (the words it contains). Its ‘naive’ assumption
is that every feature is conditionally independent of every other feature, given the class.
While this is almost never true for natural language, the model often performs surprisingly
well. To classify a new document, we choose the class ĉ that maximizes this probability:

ĉ = argmax
c∈{pos, neg}

P (c)
n∏

i=1

P (wi|c)

Here, P (c) is the prior probability of a class (how common it is), and P (wi|c) is the
likelihood of word wi appearing in a document of that class, both learned from the training
data. Due to its simplicity and computational efficiency, Naive Bayes serves as an excellent
baseline model.

In contrast, Support Vector Machines (SVMs) are discriminative classifiers. In-
stead of modeling probabilities, an SVM aims to find an optimal hyperplane that separates
the data points of different classes in the high-dimensional feature space. For text, this
means finding a decision boundary that best separates the vectors of positive reviews from
negative ones. The optimal hyperplane is the one that maximizes the margin—the dis-
tance to the nearest data point from either class. This large-margin principle helps the
model generalize better to unseen data. Furthermore, SVMs can employ the ‘kernel trick’
to learn complex, non-linear boundaries, often achieving high accuracy and making them
a robust choice for sentiment classification.

To illustrate, let’s walk through training a simple Naive Bayes classifier on a small,
labeled dataset. Imagine our training corpus consists of just four sentences:

• Positive: ‘a great film’, ‘I love this film’

• Negative: ‘a bad plot’, ‘I hate the acting’

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 174

Predicted Label

Tr
u
e
L
ab
el

Positive Negative

Positive

Negative

True Positive

(TP)

False Negative

(FN)

False Positive

(FP)

True Negative

(TN)

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

F1-score = 2TP / (2TP + FP + FN)

Figure 11.4: A confusion matrix for a binary classification task. It visualizes the four
possible outcomes—True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN)—which are used to calculate key evaluation metrics.

Our goal is to classify a new, unseen sentence: ‘I love the film’. The classifier works
by calculating a score for each potential class (positive and negative) and selecting the
one with the higher score. The calculation is based on the Naive Bayes formula, where
the score for a class is proportional to the class’s overall probability multiplied by the
probabilities of each word in the new sentence, given that class:

P (class|document) ∝ P (class)
n∏

i=1

P (wordi|class)

First, we compute the score for the positive class. The class probability, or prior,
P (positive) is 2

4 = 0.5, as two of our four training documents are positive. We then
calculate the likelihood of each word from our new sentence given the positive data. Words
like ‘love’ and ‘film’ appear in our positive training examples, giving them relatively high
likelihood values.

Next, we compute the score for the negative class. The prior P (negative) is also 0.5.
However, the words ‘love’ and ‘film’ do not appear in any negative training sentences. A
raw calculation would give them a probability of zero, which would incorrectly make the
entire score for the negative class zero. To solve this, we use a technique called Laplace
smoothing (or add-1 smoothing), which adds one to every word count. This ensures
all words have a small, non-zero probability. Still, the likelihoods P (love|negative) and
P (film|negative) will be much lower than their positive counterparts.

Finally, by multiplying the prior and the word likelihoods for each class, we find that
the score for positive is significantly higher. The classifier therefore correctly labels ‘I love
the film’ as positive.

Once a sentiment classifier is trained, we need a systematic way to measure its per-
formance. A simple ‘percentage correct’ can be misleading, especially with imbalanced
data. A more nuanced evaluation starts with a confusion matrix, which visualizes how
the model’s predictions align with the true labels, as shown in Fig. 11.4. This matrix
categorizes predictions into four types:

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 175

• True Positives (TP): Positive instances correctly identified as positive.

• True Negatives (TN): Negative instances correctly identified as negative.

• False Positives (FP): Negative instances incorrectly labeled as positive (a Type I
error).

• False Negatives (FN): Positive instances incorrectly labeled as negative (a Type
II error).

From these counts, we derive several key metrics. Accuracy is the most intuitive,
representing the overall fraction of correct predictions:

Accuracy =
TP + TN

TP + TN + FP + FN

To understand the trade-offs, we use Precision and Recall. Precision measures exact-
ness: of all instances the model predicted as positive, how many were actually positive?

Precision =
TP

TP + FP

Recall measures completeness: of all the instances that were truly positive, how many did
the model find?

Recall =
TP

TP + FN

The F1-score combines these two into a single number by calculating their harmonic
mean, providing a balanced measure that is useful when both precision and recall are
important.

F1 = 2 · Precision · Recall
Precision + Recall

=
2TP

2TP + FP + FN

Together, these metrics provide a robust framework for comparing different sentiment
analysis models.

While powerful, the machine learning approaches discussed so far share a fundamental
limitation: bag-of-words and TF-IDF representations discard word order. For these mod-
els, the sentences ‘The service was not good’ and ‘The service was good, not!’ appear very
similar, despite having opposite meanings. To capture the sequential nature of language,
we can turn to neural network architectures.

Recurrent Neural Networks (RNNs) and their variants, such as LSTMs (Long Short-
Term Memory), are explicitly designed for sequential data. An RNN processes a sentence
one word at a time, maintaining a hidden state that acts as a form of memory. At each
step, the network updates its hidden state based on the current word and the state from
the previous word.

This process allows the model to build a rich vector representation that encodes infor-
mation from the entire sequence. The final hidden state, which represents a contextualized
summary of the sentence, can then be fed into a classifier to predict the overall sentiment.
By modeling dependencies between words, these neural approaches can better understand
complex linguistic phenomena like negation and long-distance relationships, often leading
to significantly improved classification performance.

While document-level and sentence-level classification provide a useful high-level sum-
mary, they often lack the necessary granularity for detailed analysis. A single product
review, for example, can contain conflicting opinions about different features. A customer
might praise a phone’s battery life while simultaneously criticizing its camera. Assigning a
single positive or negative label to the entire text would obscure this crucial detail, leading
to a loss of valuable information.

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 176

To achieve a more nuanced understanding, we introduce Aspect-Based Sentiment
Analysis (ABSA). This more sophisticated task aims to identify opinions about specific
entities or their attributes, which are formally referred to as aspects. Instead of asking ‘Is
this review positive?’, ABSA asks ‘What specific features are being discussed, and what is
the sentiment towards each one?’ This fine-grained approach provides far more actionable
insights, moving beyond a simple polarity score to a detailed breakdown of what people
like and dislike. The core challenge of ABSA is twofold: first, identifying the aspects
themselves, and second, determining the sentiment expressed towards each one.

To achieve this fine-grained analysis, Aspect-Based Sentiment Analysis (ABSA) is
typically broken down into two fundamental sub-tasks, often executed as a pipeline. Suc-
cessfully solving the first task is a prerequisite for attempting the second.

1. Aspect Term Extraction (ATE): The initial goal is to identify the specific en-
tities or their attributes that are the target of an opinion. These are the ‘aspects’
themselves. In a product review, these might be nouns or noun phrases like ‘battery
life,’ ‘screen resolution,’ or ‘customer service.’ The output of this stage is a list of
all explicit opinion targets mentioned in the text. For example, given the sentence,
‘The phone’s camera is amazing, but its speakers are tinny,’ an ATE system should
extract the terms camera and speakers.

2. Aspect Sentiment Classification (ASC): Once the aspect terms have been ex-
tracted, the next task is to determine the polarity of the sentiment expressed towards
each specific aspect. This is a targeted classification problem. For each term iden-
tified by the ATE step, the ASC system assigns a sentiment label, such as positive,
negative, or neutral. Continuing the previous example, the sentiment for the aspect
camera would be classified as positive, while the sentiment for speakers would be
classified as negative.

Document-level sentiment analysis can be a blunt instrument, often failing to capture
the full picture when a text contains mixed opinions. To illustrate the power and necessity
of Aspect-Based Sentiment Analysis (ABSA), consider this common type of review:

• ‘The pizza was delicious, but the service was slow.’

A document-level classifier might label this sentence as neutral, as the positive and
negative sentiments could effectively cancel each other out. This overlooks crucial infor-
mation. ABSA, in contrast, dissects the sentence to extract more granular insights. The
goal is to identify the specific aspects being discussed and then determine the polarity of
the opinion expressed towards each one.

In this example, there are two distinct aspect-opinion pairs:

1. Aspect: pizza

• Opinion Expression: delicious

• Sentiment Polarity: Positive (+)

2. Aspect: service

• Opinion Expression: slow

• Sentiment Polarity: Negative (-)

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 177

The pizza was delicious, but the service was slow.
Aspect Opinion

Positive (+)

Aspect Opinion

Negative (-)

Figure 11.5: A diagram illustrating Aspect-Based Sentiment Analysis (ABSA). The sen-
tence ‘The pizza was delicious, but the service was slow’ is deconstructed into its two
core aspect-opinion pairs. The ‘pizza’ aspect is linked to the positive opinion ‘delicious’,
while the ‘service’ aspect is linked to the negative opinion ‘slow’, visually representing the
granular analysis provided by ABSA.

This process, visually deconstructed in Fig. 11.5, provides a much richer understanding
of the reviewer’s feedback. A restaurant owner reading this review learns precisely what
customers liked (the food) and what needs improvement (the service). This level of detail
is far more actionable than a simple ‘neutral’ rating and demonstrates the core value of
the ABSA task.

The first sub-task in ABSA is aspect term extraction—identifying the specific features
or entities being discussed. Techniques for this range from straightforward linguistic rules
to sophisticated machine learning models.

Rule-based approaches leverage common grammatical patterns to find aspects. A
simple heuristic might be to extract any noun or noun phrase that is modified by a
sentiment-bearing adjective. For example, in ‘The pizza was delicious,’ a rule could identify
pizza as an aspect because it is a noun connected to the positive adjective delicious.
These methods often rely on outputs from earlier pipeline stages, such as Part-of-Speech
tagging and dependency parsing, to create precise patterns. While easy to implement,
they can be brittle and struggle with linguistic variation.

A more robust and dominant approach frames extraction as a supervised sequence
labeling task. Here, the goal is to assign a tag to each word in a sentence, indicating
whether it is part of an aspect term. A common tagging schema is BIO (Beginning,
Inside, Outside). For the sentence ‘The customer service was slow,’ the desired output
would be:

• The/O customer/B-ASP service/I-ASP was/O slow/O

In this schema, B-ASP marks the beginning of an aspect, I-ASP marks the continuation
of an aspect, and O marks words that are outside any aspect. Models are trained on a
manually annotated corpus to learn to predict these tag sequences. Historically, powerful
models for this task include Conditional Random Fields (CRFs), which excel at sequence
labeling by considering the context of the entire sentence when predicting each word’s tag.

Once aspect terms like ‘pizza’ or ‘service’ have been identified, the subsequent task
is to assign a specific sentiment polarity to each one. This is crucial because the overall
sentence sentiment might be mixed or misleading. The sentiment associated with an
aspect is almost always determined by its immediate local context.

A straightforward method is to use a window-based approach. For each aspect term,
we define a context window (e.g., the 5 words before and after it) and apply a lexicon-
based sentiment calculation only to the words within that window. The sentiment for the

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 178

Food Quality

Service Speed

Ambiance

Price

Cleanliness

-1.0 -0.5 0.0 0.5 1.0

Average Sentiment Score

Figure 11.6: A horizontal bar chart visualizing the results of an Aspect-Based Sentiment
Analysis on restaurant reviews. Key aspects are listed on the Y-axis, and their aggregated
sentiment scores (from -1 to +1) are shown on the X-axis. The chart clearly distinguishes
strengths like ‘Food Quality’ and ‘Cleanliness’ (positive bars) from weaknesses like ‘Service
Speed’ (negative bar), turning unstructured feedback into actionable business intelligence.

aspect a can be a simple sum of polarity scores:

S(a) =
∑

w∈window(a)

polarity(w)

A more powerful technique frames this as a supervised classification problem. A model
is trained on examples where each instance consists of a sentence, a target aspect, and
its corresponding polarity label (positive, negative, or neutral). Features for the classifier
are engineered from the context, such as the bag-of-words within the window or syntactic
dependencies linking the aspect to opinion words. For example, a dependency parse could
explicitly link the adjective ‘delicious’ to the noun ‘pizza.’

Modern neural network architectures can learn this context automatically, using atten-
tion mechanisms to focus on the most relevant opinion words for a given aspect, regardless
of their distance from the aspect term itself.

To illustrate the practical power of ABSA, consider a large restaurant chain analyzing
thousands of online customer reviews. A simple document-level analysis might reveal an
average sentiment score of ‘mildly positive,’ but this provides no direction for improvement.
By applying ABSA, the chain can dissect this feedback into more meaningful components.

The system first extracts common aspects discussed by customers—such as food quality,
service speed, ambiance, price, and cleanliness. For each mention of an aspect, it then
classifies the associated sentiment. After aggregating the data across all reviews, a clear
picture emerges. The analysis might reveal that while ‘food quality’ consistently receives
high praise, ‘service speed’ is a significant source of negative sentiment, a critical nuance
that would otherwise be lost in an overall average score.

This granular breakdown, visualized in Fig. 11.6, transforms vague feedback into
actionable intelligence. The chart clearly highlights the restaurant’s operational strengths
and critical weaknesses at a glance. Armed with this specific insight, management can
bypass generic improvement plans and focus resources precisely where they are needed—

CHAPTER 11. SENTIMENT ANALYSIS AND OPINION MINING 179

for instance, by retraining staff to improve service efficiency rather than needlessly altering
a popular menu. ABSA thus provides a direct bridge from unstructured customer opinion
to strategic business decisions.

In summary, we have explored the main paradigms of sentiment analysis, each present-
ing a unique set of trade-offs. The optimal choice depends on the specific task, available
resources, and desired level of analytical depth.

• Lexicon-Based Methods: These are valued for their simplicity, speed, and inde-
pendence from labeled training data. They provide an excellent baseline but are
often brittle, struggling to handle contextual nuances like negation, sarcasm, or
domain-specific jargon.

• Supervised Machine Learning: This approach, which frames sentiment analysis
as a classification task, generally yields higher accuracy. Its power, however, is
contingent upon the availability of a large, high-quality annotated corpus, making
data acquisition a significant bottleneck.

• Aspect-Based Sentiment Analysis (ABSA): Offering the most granular insight,
ABSA pinpoints opinions about specific features. This detailed output is highly
actionable but comes at the cost of substantially increased complexity in both model
design and annotation.

Despite the effectiveness of the methods covered, several significant challenges persist in
sentiment analysis, often stemming from the complex nature of human expression. These
problems require moving beyond simple word polarity and towards a deeper contextual
understanding.

Key challenges include:

• Sarcasm and Irony: These figures of speech intentionally use positive words to
convey a negative sentiment. For example, in the sentence ‘I just love being stuck in
traffic,’ the literal positivity of ‘love’ is inverted by the real-world context. Simple
models struggle to detect this contradiction.

• Context-Dependent Sentiment: The polarity of a word is not always fixed. The
word unpredictable is desirable for a movie plot but highly undesirable for a car’s
brakes. This domain-specific nature challenges universal, one-size-fits-all sentiment
lexicons.

Solving these issues often requires more sophisticated models that can incorporate
world knowledge and nuanced pragmatic understanding.

The field of opinion mining continues to evolve rapidly. While the methods discussed
provide a strong foundation, the future lies in leveraging the contextual understanding
of Large Language Models (LLMs), which we will explore in the final chapter. These
models excel at detecting subtle sentiment, sarcasm, and complex aspect-based opinions
with minimal training. This capability, however, introduces critical ethical questions. We
must consider the potential for manipulating public opinion, the amplification of biases
present in training data, and the privacy implications of analyzing personal sentiments at
an unprecedented scale.

Chapter 12

The Future: Large Language Models
and Ethics

180

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 181

Feature RNN/LSTM Approach Transformer Approach

Handling of Sequential Data Processes tokens sequentially (one by one). Processes all tokens simultaneously.
Parallelization Capability Inherently sequential; difficult to parallelize. Highly parallelizable due to self-attention.
Long-Range Dependency Capture Struggles with long distances (vanishing gradients). Directly models all token-pair relationships.

Figure 12.1: A comparison of architectural trade-offs between Recurrent Neural Networks
(RNNs/LSTMs) and the Transformer architecture, highlighting the key limitations that
motivated the shift in paradigm.

Our journey through computational linguistics has covered foundational techniques,
from N-gram models and syntactic parsers to the first wave of word embeddings. These
methods provided crucial building blocks for language understanding, each tackling a
specific slice of the problem. However, recent years have witnessed a paradigm shift of
unprecedented scale and speed, moving away from specialized, feature-engineered systems.
This chapter bridges the gap from that established landscape to the revolutionary era of
Large Language Models (LLMs), exploring the architecture and capabilities that have
fundamentally redefined the field.

Before the models that now define the state-of-the-art, the field relied heavily on Re-
current Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) networks. These architectures process language sequen-
tially, ingesting one word at a time and updating an internal ‘memory’ or hidden state.
This approach was intuitive and effective for many tasks, from part-of-speech tagging to
machine translation.

However, this sequential design presented two fundamental obstacles to further progress.
The first was computational: since the processing of word wt depends on the hidden state
from word wt−1, the architecture is inherently non-parallelizable. This created a major
bottleneck for training on ever-larger datasets. The second was a context-length limitation.
While LSTMs were a significant improvement over simple RNNs, they still struggled to
effectively connect words separated by long distances. Information from the beginning of
a paragraph could be ‘forgotten’ by the time the model reached the end. A new paradigm
was needed—one that could process all input simultaneously and model long-range de-
pendencies more directly. Fig. 12.1 provides a detailed comparison of these architectural
trade-offs.

The architecture that powered this revolution is the Transformer, introduced by
Vaswani et al. in their seminal 2017 paper, ‘Attention Is All You Need.’ Its core innovation
was to dispense entirely with the sequential processing of Recurrent Neural Networks
(RNNs) and instead rely exclusively on a mechanism called self-attention. This allows the
model to process all input tokens simultaneously and directly weigh the influence of every
word on every other word in a sequence, capturing complex, long-range dependencies more
effectively than its predecessors.

As illustrated in Fig. 12.2, the original Transformer has a sophisticated encoder-decoder
structure, designed for sequence-to-sequence tasks like machine translation. The encoder
stack takes the input sequence and builds a rich, context-aware numerical representation of
it. The decoder stack then uses this representation, along with the output it has generated
so far, to produce the next token in the output sequence. Each stack is composed of mul-
tiple identical layers containing two primary sub-components: a multi-head self-attention
mechanism and a simple, position-wise feed-forward network. Residual connections and
layer normalization are used around each sub-component to facilitate training.

This flexible architecture became the blueprint for most modern LLMs. Models like
BERT (Bidirectional Encoder Representations from Transformers) leverage the encoder
stack to excel at tasks requiring deep language understanding. In contrast, models in

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 182

Encoder

N×

Multi-Head Attention

Add & Norm

Feed-Forward Network

Add & Norm

Inputs

Input Embeddings

+ Positional Encoding

Decoder

N×

Masked M-H Attention

Add & Norm

Multi-Head Attention

Add & Norm

Feed-Forward Network

Add & Norm

Outputs (shifted right)

Output Embeddings

+ Positional Encoding

Output Probabilities

Softmax

Linear

Figure 12.2: A high-level architectural diagram of the Transformer model, illustrating the
encoder and decoder stacks. The diagram shows the flow of input embeddings through
multi-head attention and feed-forward network layers, including residual connections and
layer normalization, providing a complete visual map of the model’s structure.

the GPT (Generative Pre-trained Transformer) family primarily use the decoder stack,
making them exceptionally powerful for text generation. The key to their success lies in
the self-attention mechanism, which we will now explore in detail.

At the heart of the transformer’s success is the self-attention mechanism, a novel
component that allows a model to weigh the influence of different words when processing
a particular word in a sequence. Unlike recurrent architectures like LSTMs, which process
sentences sequentially and can lose information over long distances, self-attention allows
every word to directly interact with every other word in the sentence. This direct access
is crucial for capturing complex dependencies, such as resolving the referent of a pronoun
or understanding the scope of negation, regardless of how far apart the words are.

The mechanism operates on a simple but powerful principle, often described by an
analogy to a library retrieval system. For each word in an input sequence, we create three
distinct vectors: a Query (Q), a Key (K), and a Value (V).

• The Query vector represents a word’s request for information. It’s like asking,
‘What other words in this sentence are relevant to my meaning?’

• The Key vector acts as a label or an index for a word. It advertises its own prop-
erties, saying, ‘This is the kind of information I hold.’

• The Value vector contains the actual content or substance of a word. It’s the
information that will be passed on if a query finds its key relevant.

These three vectors are not fixed; they are generated by multiplying a word’s input
embedding by three separate weight matrices (WQ, WK , W V) that are learned during the
model’s training process. This allows the model to learn the most effective way to query,
label, and represent each word for the task at hand.

The self-attention process, depicted in Fig. 12.3, unfolds in three main steps. First, to
determine how much attention the word at position i should pay to the word at position

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 183

Inputs

Q

WQ

K
WK

V

WV

×
MatMul

Q

KT

Scale

÷ √dk

Softmax

×
MatMul

Attention
Weights

V

Output

Figure 12.3: A diagram of the scaled dot-product self-attention mechanism, as described
in the text.

j, we compute a compatibility score. This is done by taking the dot product of the query
vector of word i (qi) with the key vector of word j (kj). A higher score implies greater
relevance.

Second, these raw scores are scaled and normalized. The dot product scores are divided
by the square root of the dimension of the key vectors,

√
dk. This scaling factor prevents

the dot products from growing too large, which helps stabilize the learning process. Af-
terwards, a softmax function is applied across all the scores for word i. This converts
the scores into a set of positive weights that sum to one, effectively creating a probability
distribution of attention over the entire sentence.

AttentionWeightsij = softmax

(
qi · kTj√

dk

)
Finally, the new representation for word i, which we can call its context vector zi, is

computed as a weighted sum of all the Value vectors in the sentence. The weights used
in this sum are precisely the attention weights calculated in the previous step.

zi =
∑
j

AttentionWeightsij · vj

In essence, the final representation of each word is a blend of all other words’ Value
vectors, where the amount contributed by each word is determined by its query-key com-
patibility. This entire process is performed in parallel for every word in the sequence using
highly optimized matrix operations, a key advantage over sequential models. The result
is a set of output vectors, each one enriched with contextual information from the entire
input, forming the foundation for the transformer’s deep understanding of language.

To make the concept of self-attention concrete, let’s walk through an example using
the sentence: ‘The robot programmed the logic’. The goal is to compute a new, context-
aware representation for each word that reflects its relationships with other words in the
sentence. We will focus on the word ‘programmed’.

First, for every word, we generate three distinct vectors from its initial embedding: a
Query (Q), a Key (K), and a Value (V). These are produced by multiplying the word’s

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 184

embedding by three unique weight matrices (WQ, WK , WV) that are learned during
training.

• The Query vector for ‘programmed’ (qprogrammed) represents its search for context:
‘Who did the programming, and what was programmed?’

• The Key vector for each word (e.g., krobot) acts as a label describing the information
it provides.

• The Value vector (e.g., vrobot) is the actual content or representation of that word.

The calculation to update the representation for ‘programmed’ unfolds in four steps:

1. Score: We measure the relevance of every other word to ‘programmed’ by taking the
dot product of its query vector (qprogrammed) with every key vector in the sentence.
The score for the ‘robot’ connection is qprogrammed · krobot. A high dot product
indicates high relevance.

2. Scale: To aid in stable training, all scores are scaled by dividing them by the square
root of the dimension of the key vectors,

√
dk.

3. Softmax: A softmax function is applied to the scaled scores. This transforms them
into a probability distribution—a set of attention weights that sum to 1. For the
word ‘programmed’, we would expect the weights corresponding to ‘robot’ and ‘logic’
to be high, while the weights for ‘the’ would be very low.

4. Weighted Sum: The final, context-aware representation for ‘programmed’, which
we’ll call zprogrammed, is a weighted sum of all the Value vectors in the sentence,
where each value vector is multiplied by its corresponding attention weight.

This entire operation, performed for all words simultaneously using matrix operations,
is elegantly captured by the formula:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

This process yields a new set of embeddings where each word’s representation is now
richly infused with information about its role and relationships within the entire sentence.

While a single self-attention mechanism is powerful, it forces the model to average all
types of linguistic relationships—syntactic, semantic, and anaphoric—into a single repre-
sentation. This can create an informational bottleneck. To overcome this, the transformer
architecture employs multi-head attention, which allows the model to jointly attend to
information from different perspectives simultaneously.

The core idea is to run the scaled dot-product attention mechanism multiple times in
parallel. As illustrated in Fig. 12.4, rather than performing a single attention function
on the model’s full-dimensional inputs, multi-head attention first linearly projects the
queries, keys, and values h times using different, learned projection matrices. These
projected versions are then fed into h separate attention ‘heads.’ Each head can focus on
a different representation subspace, enabling one head to capture, for example, subject-
verb agreement while another tracks semantic similarity between distant words.

The outputs from each of the h heads are then concatenated and passed through one
final linear projection to produce the layer’s output. This process is formalized as:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 185

Single-Head Attention Multi-Head Attention

Q K V

Scaled Dot-Product
Attention

Output

Q K V

Linear Projections (h times)

Attention

(head₁)

Attention

(head₂) ... Attention

(headₕ)

Concat

Linear (Wᴼ)

Output

Figure 12.4: A diagram contrasting single-head attention (left) with multi-head attention
(right). Multi-head attention projects the queries (Q), keys (K), and values (V) through
parallel linear layers, feeding the results into multiple independent attention ‘heads’. The
outputs of these heads are concatenated and passed through a final linear transformation
to produce the output, allowing the model to focus on different information subspaces
simultaneously.

where headi = Attention(QWQ
i ,KWK

i , V W V
i).

The parameters to be learned are the projection matrices for each head (WQ
i ,WK

i ,W V
i)

and the final output projection matrix (WO). This parallel structure provides a richer,
more nuanced way for the model to process relationships within a sequence, significantly
enhancing its expressive power.

The self-attention mechanism, as powerful as it is, has a fundamental limitation: it
is permutation-invariant. It processes the input as an unordered set of vectors, meaning
it has no inherent sense of word order. To this mechanism, ‘man bites dog’ and ‘dog
bites man’ would appear identical. To solve this, the Transformer architecture injects
information about the position of each token directly into its input representation. This
is achieved through positional encodings.

Instead of learning a separate embedding for each position, the original Transformer
uses a clever, fixed formula based on sine and cosine functions of varying frequencies. For
a token at position pos in the sequence and for each dimension i of the embedding vector,
the positional encoding PE is calculated as follows:

PE(pos,2i) = sin(pos

100002i/dmodel
) PE(pos,2i+1) = cos(pos

100002i/dmodel
)

Here, dmodel is the dimension of the embeddings. Each dimension of the positional
encoding corresponds to a sinusoid of a different wavelength, from low to high frequency.
This design is significant because it allows the model to easily learn to attend to relative
positions, since the encoding for any position can be represented as a linear function of
any other. The final input vector for each token, which is fed into the first Transformer
block, is simply the sum of its word embedding and its corresponding positional encoding.
This simple addition equips the model with the crucial sequence order information that
self-attention alone lacks, enabling it to understand grammatical structure.

Prior to the current era, the standard approach involved training a model from scratch
for each new natural language processing task. A model intended for sentiment analy-

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 186

Stage 1: Pre-training

Massive Unlabeled Corpus

(e.g., Wikipedia, Books)

Train with
general objective

General Purpose Base Model

(Internalizes grammar, semantics, etc.)

Stage 2: Fine-tuning

Small Labeled Dataset

(e.g., Sentiment Reviews)

Adapt with
specific examples

New Classification Layer

Fine-tuned Model

Task Output
(e.g., "Positive")

Figure 12.5: The pre-training and fine-tuning paradigm. In the first stage, a large model
is pre-trained on a massive, unlabeled text corpus to develop a general understanding
of language. In the second stage, this base model is fine-tuned using a much smaller,
task-specific labeled dataset to adapt it for a particular application, such as sentiment
analysis.

sis, for instance, would be trained solely on a dataset of labeled reviews, learning about
language only through that narrow lens. This process was not only computationally ex-
pensive but also required a large, task-specific labeled dataset for every problem, limiting
the model’s general linguistic competence. The arrival of the transformer architecture
fundamentally changed this, introducing the more powerful and efficient paradigm of pre-
training and fine-tuning.

This new approach begins with pre-training, a computationally massive, one-time
process. In this stage, a large transformer model is trained on a vast and diverse corpus
of unlabeled text, such as the entirety of Wikipedia and large collections of books. The
model is not trained to perform any specific user-facing task. Instead, it is given a general
objective, such as predicting randomly masked words within a sentence (as in BERT) or
predicting the next word in a sequence (as in GPT). By learning to perform this objective
at a massive scale, the model is forced to develop a deep, contextualized understanding of
language, internalizing grammar, syntax, semantic relationships, and a significant amount
of world knowledge. This creates a versatile base model that serves as a powerful starting
point for many different applications.

The second stage, fine-tuning, adapts this general-purpose model to a specific down-
stream task. This involves taking the pre-trained model and training it further, but on
a much smaller, task-specific labeled dataset. For example, to create a sentiment clas-
sifier, one would add a simple classification layer to the pre-trained model and continue
training on a few thousand labeled movie reviews. Because the model has already learned
the nuances of language during pre-training, it can learn the new task with far greater
data efficiency and achieve a much higher level of performance than a model trained from
scratch. This two-stage workflow, which separates the general language acquisition from
the specific task adaptation, is visualized in Fig. 12.5. This paradigm has democratized
access to state-of-the-art NLP, as developers can now leverage powerful, publicly available
pre-trained models without incurring the immense cost of the initial pre-training phase.

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 187

One of the most remarkable consequences of scaling up models into the billions of
parameters is the appearance of emergent capabilities—abilities that are not explicitly
programmed or trained for, but arise as a byproduct of the model learning rich, general-
purpose representations of language. This has fundamentally changed how we approach
many NLP tasks, giving rise to new interaction paradigms like zero-shot and few-shot
learning.

• Zero-Shot Learning: This refers to a model’s ability to perform a task for which
it has received no specific training examples. For instance, a language model pre-
trained on a vast corpus of general text, but not fine-tuned for sentiment analysis, can
often correctly classify a movie review as positive or negative when prompted. The
model is not learning from examples of sentiment classification; rather, it is leverag-
ing its generalized understanding of language, context, and semantics learned during
pre-training to infer the task’s requirements from the natural language instruction
itself.

• Few-Shot Learning (In-Context Learning): This capability takes the zero-shot
idea a step further. Instead of just giving the model an instruction, we provide a
handful of examples of the task directly within the prompt. For example, to translate
uncommon slang, we might provide a prompt like:

Q: What is the formal way to say ‘spill the tea’? A: To ‘share gossip’. Q: What is
the formal way to say ‘that’s cap’? A: To say ‘that’s a lie’. Q: What is the formal
way to say ‘low-key’? A:

The model uses these examples as a pattern to follow for the final, unanswered question.
Crucially, this is not a form of training. The model’s weights are not updated; the learning
happens entirely ‘in-context’ during the inference process. This radical departure from the
traditional paradigm of collecting thousands of labeled examples and fine-tuning a model
for every single task is what makes modern LLMs so uniquely powerful and versatile.

To illustrate the remarkable versatility of LLMs, let’s examine how a single, pre-trained
model responds to prompts for vastly different tasks. Unlike specialized models from
previous eras, which required distinct architectures and training datasets for each task,
the modern LLM leverages its general linguistic understanding to adapt on the fly. This
case study explores its performance on text summarization and code generation.

Task 1: Abstractive Text SummarizationConsider the following source text provided
to an LLM:

Source Text: A recent study published in Nature Astronomy details the discovery of
exoplanet XO-5b, located within its star’s habitable zone. Spectrographic analysis of its
atmosphere reveals significant concentrations of water vapor and methane, key biosig-
natures. While not definitive proof of life, the combination of a rocky surface, liquid
water potential, and these atmospheric gases makes XO-5b one of the most compelling
candidates for extraterrestrial life found to date.

The model is given a simple prompt: Summarize the paragraph above in two sentences.
LLM Output: Scientists have identified exoplanet XO-5b as a strong candidate for

hosting alien life. Located in its star’s habitable zone, the rocky planet’s atmosphere
contains both water vapor and methane, which are considered potential signs of biological
activity.

This output demonstrates a sophisticated capability. The summary is abstractive, not
extractive; the model did not simply copy and paste key sentences. Instead, it synthesized
the core information, paraphrasing concepts like ‘most compelling candidates’ into ‘strong
candidate’ and ‘extraterrestrial life’ into ‘alien life.’ It correctly identified the most salient
points—the planet’s name, location, and the atmospheric evidence—and reconstructed

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 188

them into a new, coherent text. This task, which requires a deep understanding of seman-
tics and relevance, is handled with an efficacy that was challenging for pre-LLM systems.

Task 2: Code GenerationNext, the same model is given a prompt that falls outside
the traditional domain of natural language processing:

Prompt: Write a Python function called find_palindromes that takes a list of words
and returns a new list containing only the palindromes, ignoring case.

LLM Output:

def f ind_pal indromes (word_l ist) :
"""
Finds a l l pa l indromes in a l i s t o f words , case−i n s e n s i t i v e l y .

Args :
word_l i s t : A l i s t o f s t r i n g s .

Returns :
A l i s t o f s t r i n g s con ta in ing on ly the pal indromes .

"""
pal indromes = []
for word in word_list :

Normalize to lowercase f o r case−i n s e n s i t i v e comparison
normalized_word = word . lower ()
i f normalized_word == normalized_word [: : − 1] :

pal indromes . append (word)
return pal indromes

The model’s ability to generate functional, well-documented code is a powerful demon-
stration of its emergent capabilities. It correctly interpreted several distinct instructions
within the prompt:

• The function name (find_palindromes).

• The input and output data types (lists of strings).

• The core logical concept of a palindrome (a string that reads the same forwards and
backwards).

• The constraint to ignore case, correctly implementing it by converting strings to
lowercase before comparison.

The same underlying architecture and weights that processed astronomical text are
now manipulating the syntax and logic of a formal programming language. This ability
to fluidly transition between understanding natural language intent and producing struc-
tured, logical output highlights the general nature of the model’s internal representations.
From summarization to code generation, and from creative writing to logical reasoning,
the LLM acts as a general-purpose instruction-following engine, a qualitative leap from
the specialized models that preceded it.

The transformative power of Large Language Models is matched by a correspond-
ing set of significant ethical challenges. While their ability to generate fluent, coherent
text is remarkable, this capability is a double-edged sword. The very source of their
strength—training on vast, often unfiltered swathes of the internet—is also their greatest
vulnerability. This data is a mirror of human society, containing not only our collective
knowledge but also our implicit biases, harmful stereotypes, and factual errors. Conse-
quently, the uncritical development and deployment of LLMs present serious risks that
demand careful examination by practitioners and policymakers.

In the sections that follow, we will critically analyze several of these pressing issues,
including:

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 189

1. Skewed Training Data

Text contains societal biases:

"The doctor said he..."

"The nurse helped her..."

Observed Frequency for "Doctor"

'he' (60%) 'she' (40%)

2. LLM Learns Patterns
Internalizes correlations

as statistical links:

P("he"|doctor) > P("she"|doctor)

3. Bias Amplification

Input Prompt:

"The doctor is..."

Model's Output Likelihood:

'he' (90%) 'she' (10%)

4. DANGEROUS FEEDBACK LOOP

Biased output pollutes future training data

Figure 12.6: The process of bias amplification in Large Language Models. Skewed training
data, containing societal biases (e.g., gendered associations with professions), is ingested by
the LLM. The model learns these statistical correlations and may amplify them, leading to
highly stereotyped outputs even from neutral prompts. This creates a dangerous feedback
loop where the model’s biased generations can pollute future training datasets, further
entrenching the bias.

• Bias and Fairness: How models learn and amplify societal prejudices present in their
training data, leading to inequitable outcomes.

• Misinformation: The potential for LLMs to generate convincing but false content
at scale, threatening our information ecosystem.

• Environmental Impact : The substantial computational and energy costs associated
with training state-of-the-art models.

• Societal Disruption: Broader concerns ranging from job displacement to questions
of intellectual property.

Large Language Models learn from data created by humans, and human data is a
mirror of our world, reflecting its societal, historical, and systemic biases. The vast text
corpora scraped from the internet are not neutral repositories of fact; they are laden
with the stereotypes and prejudices, both subtle and overt, of their creators. Since LLMs
are fundamentally powerful statistical pattern recognizers, they do not just learn the
rules of grammar and semantics; they also learn and internalize these social biases as
statistical regularities. The principle is straightforward: if the training data repeatedly
associates certain groups with certain attributes, the model learns this association as a
strong probabilistic link.

This process is often more than mere reflection; it can be bias amplification. The
model’s objective is to predict the most probable sequence of words. If a slight statistical
bias exists in the data—for instance, if the word CEO co-occurs with male pronouns 60%
of the time—the model might learn this as a primary signal and amplify it, generating text
where the association appears 80% or 90% of the time. The model doesn’t understand
that a correlation represents a harmful stereotype; it only registers it as a high-probability
pattern to be replicated. As illustrated in Fig. 12.6, this pipeline from skewed input

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 190

data to biased model output can create a dangerous feedback loop, where the model’s
stereotyped generations could eventually pollute future training sets, entrenching the bias
even further.

The biases learned by LLMs manifest in numerous harmful ways:

• Gender Bias: Models frequently assign professions, traits, and activities based
on gender stereotypes. For example, a model may be more likely to complete the
sentence ‘The doctor said...’ with the pronoun he, and ‘The nurse said...’ with
the pronoun she, simply because this pattern is dominant in the training data.
Mathematically, the model has learned a biased conditional probability where:

P (‘he’|‘The brilliant scientist...’) > P (‘she’|‘The brilliant scientist...’)

• Racial and Ethnic Bias: Models can associate specific racial or ethnic groups
with negative stereotypes, criminal activities, or a limited set of socioeconomic roles,
leading to the generation of defamatory or derogatory content.

• Cultural Bias: Because training data is predominantly in English and sourced from
Western countries, LLMs often adopt a Western-centric worldview as the default,
marginalizing or misrepresenting other cultures, traditions, and viewpoints.

The real-world consequences of deploying these biased models are significant and se-
vere. They can perpetuate damaging stereotypes at an unprecedented scale, lead to dis-
criminatory and unfair outcomes in critical applications like hiring or loan assessments,
and generate toxic or offensive language that fuels social harm. An AI system used to
screen résumés, for instance, could systematically downgrade qualified candidates from a
specific demographic, not due to malicious programming, but because its underlying lan-
guage model has internalized the biased patterns of human-written text. This challenge
is not a simple bug to be fixed but a deep-seated problem rooted in the data we use to
build AI and the society that data reflects. The old adage of ‘garbage in, garbage out’ is
insufficient here; with LLMs, the reality is often ‘bias in, bias amplified out.’

To make the problem of amplified bias concrete, let’s consider a case study involving
a series of ambiguous prompts. These prompts are designed not to be explicitly leading
but to provide just enough room for a model’s learned statistical associations to surface as
stereotypes. The goal is to observe how a large language model resolves ambiguity when
faced with concepts tied to gender, profession, or socioeconomic status.

Consider the following prompts given to a hypothetical, but representative, LLM:

• Prompt 1: The doctor yelled at the nurse because she was late.

– Model Completion: ...She had gotten stuck in traffic and felt terrible
for delaying the doctor's schedule.

• Prompt 2: The CEO commended the programmer because he wrote excellent
code.

– Model Completion: ...He was a rising star in the company, known for
his innovative solutions.

• Prompt 3: The immigrant from Latin America worked as a...

– Model Completion: ...landscaper to support his family back home.

• Prompt 4: The man from the inner city was arrested for...

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 191

– Model Completion: ...drug possession and assault.

In the first two examples, the model must resolve the pronoun’s antecedent. For ‘she’
in Prompt 1, the model defaults to the nurse, and for ‘he’ in Prompt 2, it defaults to
the programmer. While grammatically plausible, these choices reflect and reinforce strong
societal stereotypes about the genders typically associated with these professions. The
model isn’t reasoning about gender; it is reproducing the most probable word sequences
based on its training data, where the word ‘nurse’ is more statistically correlated with the
pronoun ‘she’ and professions like ‘CEO’ and ‘programmer’ are more correlated with ‘he.’

The second pair of prompts demonstrates a similar effect based on ethnic and socioeco-
nomic stereotypes. The completions for the ‘immigrant from Latin America’ and the ‘man
from the inner city’ draw on harmful and simplistic caricatures. The model has learned
these associations from its training corpus—a vast collection of text from the internet and
books that inevitably contains and reflects human biases. When a prompt is underspec-
ified, the model fills the gap by drawing on the strongest, and often most stereotypical,
statistical patterns it has observed.

This case study is not an indictment of a single model but an illustration of a sys-
temic problem. Without specific mitigation strategies, LLMs act as powerful engines for
laundering statistical biases found in data into seemingly authoritative statements. The
danger lies in their ability to reproduce these stereotypes at an unprecedented scale, sub-
tly reinforcing prejudice in applications ranging from automated hiring tools to content
generation. This makes the development of robust auditing and debiasing techniques a
critical area of ongoing research.

A critical ethical challenge arising from Large Language Models is their potential
to generate convincing, fluent, and yet entirely false information. While earlier NLP
systems often produced errors that were syntactically or semantically awkward, LLMs
can generate falsehoods that are stylistically indistinguishable from well-written human
text. This phenomenon is often referred to as a hallucination, where the model fabricates
facts, sources, or details with an air of complete authority. The core issue stems from
the model’s fundamental objective: an LLM is not a knowledge base or a fact-checking
engine. It is a probabilistic model trained to predict the next token in a sequence. Its
goal is to maximize the likelihood of the text it generates, aiming for plausibility rather
than accuracy. A statement that is statistically likely based on patterns in the training
data may have no grounding in reality.

This disconnect between fluency and factuality is exacerbated by the model’s train-
ing data. LLMs are trained on vast swathes of the internet, a repository containing not
only the sum of human knowledge but also a significant volume of conspiracy theories,
propaganda, and unintentional misinformation. The models learn the patterns of these
falsehoods just as readily as they learn factual information, with no inherent mechanism
to distinguish between the two. When prompted on a controversial or poorly documented
topic, an LLM may simply synthesize a plausible-sounding response by blending infor-
mation from unreliable sources it encountered during training, leading to the confident
assertion of incorrect information.

The primary danger lies in the ability to weaponize this capability at scale. Histori-
cally, creating and disseminating disinformation required significant human effort. LLMs
dramatically lower this barrier, enabling malicious actors to automate the generation of:

• Fake News Articles: Creating hundreds of unique articles on a fabricated event
to flood news aggregators and social media.

• Automated Propaganda: Generating personalized, persuasive messages to influ-
ence political opinion or sow social discord.

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 192

• Spam and Phishing: Crafting highly convincing and individualized emails or
product reviews to deceive users.

• Denial-of-Information Attacks: Flooding search engine results with plausible
but incorrect information to make it difficult for users to find reliable sources.

Detecting machine-generated text is an increasingly difficult challenge. The very mod-
els designed to detect AI-written content are often outpaced by the rapid improvements
in the generation models they are trying to catch. This creates a classic cat-and-mouse
game where detection methods that rely on statistical artifacts in text generation quickly
become obsolete. Proposed technical solutions, such as cryptographic ‘watermarking’ to
invisibly tag a model’s output, are still in early research stages and face significant hurdles
to widespread adoption and standardization.

Ultimately, the proliferation of high-quality synthetic text shifts the burden of verifica-
tion squarely onto the human reader. It underscores the urgent need for enhanced digital
literacy and critical thinking skills across society. While technical safeguards may offer
partial solutions, the most robust defense against machine-generated misinformation is an
educated and skeptical public, prepared to question sources and verify information before
accepting it as truth. The challenge is no longer merely technical but deeply societal.

The immense scale of modern Large Language Models is not just a matter of parameter
counts; it entails staggering computational and environmental costs. Training a model
with billions or even trillions of parameters on terabytes of text requires an enormous
expenditure of energy and processing time. This reality is often obscured by the models’
seamless interfaces, but it has profound real-world consequences that must be considered as
part of their ethical evaluation. The pursuit of state-of-the-art performance has often relied
on a ‘Red AI’1 approach, prioritizing accuracy and scale above computational efficiency.

The computational budget for training a major LLM is measured in petaflop/s-days.
One petaflop/s-day represents the total computation performed by a system running at
1015 floating-point operations per second (FLOPS) for a full 24 hours. As shown in
Fig. 12.7, the resources required have grown exponentially with model size. While an
early large model like BERT required a few dozen petaflop/s-days, a model on the scale
of GPT-3 demands tens of thousands. This compute is provided by massive data centers
housing thousands of specialized processors, like GPUs or TPUs, running continuously
for weeks or even months. This not only represents a significant financial investment but
also concentrates immense computational power in the hands of a few large technology
corporations.

This intensive computation translates directly into a significant environmental foot-
print. The primary driver is electricity consumption. The total energy used to train a
single large model can be equivalent to the annual electricity usage of hundreds of house-
holds. The resulting carbon emissions depend heavily on the energy mix powering the
data center—whether it relies on carbon-intensive fossil fuels or renewable sources. As
Fig. 12.7 illustrates, the estimated carbon footprint can be substantial. For instance,
one influential 2019 study estimated that training a single large transformer model could
emit over 626,000 pounds of CO2 equivalent—roughly five times the lifetime emissions of
an average American car, including its manufacture. While newer data centers increas-
ingly utilize renewable energy, the sheer demand for power remains a critical sustainability
challenge for the field.

The high cost of training has spurred a growing field of research into Green AI and
model efficiency. Techniques such as network pruning (removing redundant parameters),
quantization (using lower-precision numbers), and developing more efficient architectures

1Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM,
63(12), 54-63.

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 193

Pe
ta
fl
o
p
/s

-d
a
y
s

(l
o
g
 s

ca
le

)

100

1k

10k

100k

10

C
O

2
 E

m
issio

n
s (to

n
s, lo

g
 sca

le
)

100

1k

10k

BERT GPT-3 Megatron-Turing NLG

Petaflop/s-days CO2 Emissions (tons)

Figure 12.7: A bar chart illustrating the exponential growth in computational and envi-
ronmental costs for training large language models. Blue bars represent the computational
budget in petaflop/s-days (left axis, log scale), while red bars show the estimated carbon
footprint in tons of CO2 equivalent (right axis, log scale). Data for models like BERT,
GPT-3, and Megatron-Turing NLG are shown to highlight the increasing scale.

aim to reduce the computational requirements for both training and inference. These
efforts are critical for democratizing access to powerful NLP technology and mitigating its
environmental impact, ensuring that the future of the field is not only more capable but
also more sustainable.

The societal impact of LLMs extends far beyond technical flaws like bias, touching upon
the fundamental structures of our economy and legal systems. A primary concern is job
displacement. The capacity of these models to perform sophisticated cognitive labor—from
writing marketing copy and generating code to summarizing legal documents—threatens
to automate tasks historically performed by skilled professionals. While some argue that
LLMs will primarily augment human capabilities and create new roles like AI auditors or
prompt engineers, the transition will undoubtedly cause significant economic disruption.
The debate is no longer about if AI will affect the workforce, but rather how society
can manage a large-scale shift in the nature of work, ensuring equitable outcomes and
providing support for those whose skills are devalued by automation.

Equally disruptive are the unresolved questions surrounding intellectual property (IP)
and ownership. LLMs are built upon foundations of data, much of which is scraped from
the web and includes copyrighted books, articles, and source code. This practice has
sparked legal challenges from creators who argue that their work is being used without
consent or compensation, pushing the legal doctrine of ‘fair use’ into uncharted territory.
The ownership of AI-generated content presents another legal frontier. If a user provides
a prompt that results in a novel poem or a functional piece of software, who holds the
copyright?

• The user who crafted the prompt?

• The company that developed and trained the model?

• Or does the output immediately enter the public domain?

CHAPTER 12. THE FUTURE: LARGE LANGUAGE MODELS AND ETHICS 194

Current legal frameworks are ill-equipped to provide clear answers, creating profound
uncertainty for creative and technical industries that rely on IP protections. These chal-
lenges contribute to a broader unease, blurring the lines between human and machine
creation and forcing a re-evaluation of authorship itself. Addressing these multifaceted
issues requires more than just technical patches; it demands a proactive, interdisciplinary
dialogue involving policymakers, legal experts, and ethicists to establish new norms for a
world increasingly co-authored by algorithms.

Large Language Models represent a profound and pivotal moment in the history of
computational linguistics. Their capacity for generating remarkably fluent text, their
versatility across a vast spectrum of tasks from summarization to code generation, and
their emergent abilities like few-shot learning represent a genuine paradigm shift. We have
moved from meticulously engineered, task-specific systems to general-purpose models of
unprecedented scale and capability.

However, this transformative power is inextricably linked with significant and inherent
risks. As we have seen, these models can amplify harmful biases from their training data,
serve as potent tools for generating misinformation, and demand enormous computational
resources with a considerable environmental footprint. The path forward for researchers
and practitioners is therefore a dual challenge: to continue exploring and extending the
incredible potential of LLMs while simultaneously developing the frameworks necessary
to ensure their development is responsible, equitable, and aligned with human values.

The path forward for computational linguistics is not simply a matter of scaling up
existing models. The very success of Large Language Models has illuminated the criti-
cal research frontiers that will define the next decade. These future directions are less
about achieving raw performance and more about building systems that are efficient,
interpretable, and aligned with human values.

A primary challenge is efficiency. The immense computational and environmental cost
of training foundational models is unsustainable and limits research to a few well-funded
labs. The field of ‘Green AI’ seeks to address this by developing new methods to achieve
more with less. Active research areas include:

• Knowledge Distillation: Training smaller, more efficient ‘student’ models to repli-
cate the performance of a large ‘teacher’ model.

• Quantization and Pruning: Reducing model size by using lower-precision nu-
merical formats for weights or removing redundant parameters.

• Efficient Architectures: Designing novel model structures that require fewer com-
putations from the ground up.

A second major frontier is interpretability. As models are deployed in sensitive domains
like medicine and law, the ‘black box’ problem—not knowing why a model made a par-
ticular decision—becomes unacceptable. The goal of Explainable AI (XAI) is to develop
techniques to make model reasoning transparent. This is crucial not only for building
trust and ensuring fairness but also for debugging and improving model performance.

Finally, and perhaps most profoundly, is the challenge of ethical alignment. Ensur-
ing that powerful AI systems act in ways that are beneficial to humanity is a complex,
interdisciplinary problem. This goes beyond simply filtering out toxic language; it in-
volves instilling nuanced values like honesty, fairness, and an awareness of uncertainty.
Future work will require deep collaboration between computer scientists, ethicists, and
social scientists to define these values and develop robust methods for embedding them
into AI systems. The ultimate goal is to create models that are not just powerful, but
also responsible and wise.

	Introduction to Computational Linguistics
	Words, Regular Expressions, and Automata
	Corpus Linguistics and Text Normalization
	Language Modeling with N-grams
	Part-of-Speech Tagging
	Syntactic Parsing
	Lexical and Compositional Semantics
	Discourse, Coreference, and Dialogue
	Machine Translation
	Information Retrieval and Information Extraction
	Sentiment Analysis and Opinion Mining
	The Future: Large Language Models and Ethics

