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Abstract

I study mergers where each firm owns multiple shops across a coun-
try. The corresponding current practice of the European Commission
prescribes the analysis of catchment areas of individual shops as iso-
lated markets. Such an approach is internally inconsistent. Borrowing
from the network theory, I show how to extend the European Commis-
sion’s approach to consistently take overlaps in catchment areas into
account. I apply my network approach to an actual merger case and
I find that neglecting overlaps in catchment areas can result in sub-
stantial biases. A revision of the European Commission’s practice is
therefore recommended.
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1 Introduction
In the recent past the European Commission (EC) investigated a number
of merger cases where the merging parties owned multiple shops across a
country.1 A typical case is as follows. The shops can be supermarkets,
pharmacies, gas stations, swimming pools, cinemas, etc. Due to transporta-
tion costs, the competition between the shops is local in scope. The number
of shops can go into hundreds or thousands and it is infeasible for the merg-
ing parties or the EC to analyze them all on a case by case basis. Initial

∗The author is thankful to Vladimir Karamychev, Ivo Nobel, Alexei Parakhonyak,
and David Weiskopf for their valuable comments and suggestions, and to the Economics
department at Erasmus University Rotterdam for providing a guest researcher position.

1See cases M.1221, M.1684, M.4686, M.6506, M.6822.
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screening for potentially problematic areas is necessary. In many cases the
EC has adopted the following approach.

Given the type of shops under investigation, the maximum travel time is
defined so that it is sensible to assume that consumers are willing to travel
that amount of time to reach a competing shop. Then, for each shop of the
merging parties a local market is defined with the center at that shop and
capturing all competing shops that fall within the maximum travel time. For
each of the so-defined local markets a concentration analysis is performed.
Normally, the EC follows the general guidelines with some industry-specific
modifications, e.g. local markets with the HHI below 2 000 and the HHI
increase below 250 are considered non-problematic.2 All local markets that
are not automatically cleared will require more thorough investigation.

Effectively, the EC uses partial equilibrium analysis of horizontally dif-
ferentiated markets to study what impact a merger can have on prices. In
the rest of the paper I refer to this approach as the local markets approach.
However, local markets overlap and if the corresponding connections are
taken into account, i.e. if we look at the general equilibrium—as applied
to these horizontally differentiated markets—then the effect on prices can
potentially be different. I use the network theory to develop this new ap-
proach, and so I refer to it as the network approach. Just how important
then is this possible difference between the outcomes of the local markets
and the network approaches?

Firstly, some mergers are cleared subject to divestments. In such cases
the initial screening procedure might also be used to decide on which di-
vestments are necessary. If the network approach delivers a different set of
problematic areas in comparison with the local markets approach, then that
means the firms might be divesting wrong shops (from the society’s point of
view). Secondly, the outcome of the initial screening procedure might decide
the outcome of the merger case. We can speculate that in the worst case
scenario a merger might be cleared unconditionally using the local markets
approach whereas it should be blocked based on the networks approach, or
vice versa.

In this paper I combine the insights from the literature on differenti-
ated Bertrand competition and the literature on network games to setup a
model that, on one hand, is in line with the EC practice of defining local
markets and, on the other hand, allows for the general equilibrium analysis
of horizontally differentiated markets. I then present an example where the
local markets and the network approaches deliver opposite results. To assess
whether such differences occur in practice, as well as to demonstrate that my
network approach is feasible, I revisit a past merger case of two Dutch super-

2See paras. 17–21 in “Guidelines on the assessment of horizontal mergers under the
Council Regulation on the control of concentrations between undertakings,” Official Jour-
nal C 31, 05.02.2004, pp. 5–18.
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market chains. I find that for a number of shops the local markets approach
of the EC is strongly biased. In light of these results, there is scope for im-
provement within the current antitrust practices when it comes to mergers
of firms with multiple points of sale. From the academic perspective, this
paper demonstrates a novel practical application of the network theory.

In general, competition economists are aware that network effects can
be important. See, e.g. the chain of substitution argument in Bishop
and Walker (2010, p. 145). The argument goes as follows. Suppose the

A B C
geography is such that shops A and B compete with
each other, shops B and C compete with each other,
but not shops A and C directly. The chain of substitution argument says
that even if shops A and B belong to the merging parties, there might not
be a substantial increase in prices after the merger, because the prices in
shop B will be constrained by shop C, and the prices in shop A will be
constrained by shop B. Whereas the local markets approach identifies a
monopoly market centered around shop A.3 In this paper I undertake a
more formal analysis of this critique and show with a specific example what
the chain of substitution argument might imply for merger analysis.

I define consumer preferences following Dixit (1979), Singh and Vives
(1984), and Häckner (2000). Conceptually, Dixit’s specification implies that
consumers diversify their purchases across all neighbouring shops. Given a
suitable time horizon, this feature is realistic for some of the examples given
earlier: supermarkets, gas stations. Another possible modelling approach is
to use discreet choice models. Arguably, discreet choice models are more
suitable for, e.g., swimming pools. However, these models—of which the
logit model is the simplest example—are likely to deliver multiple equilibria
when complex networks are considered. And multiplicity of equilibria is a
hurdle for normative applications of the model.

When the EC defines local markets, they define which shops exerts com-
petitive pressure on the current shop. I will assume that consumers are
concentrated at shop locations. Then saying that shop A exerts competitive
pressure on shop B is equivalent to saying that consumers that are located
at B can shop not only at B but also at A. In this way, I can take the local
markets as defined by the EC as a starting point and from there draw the
corresponding network of shops and consumers.

Placing consumers at network nodes results in a model that is easily
tractable even for thousands of shops. Following Hotelling, one can also
place consumers at the edges, see Heijnen and Soetevent (2014). These
models can give new theoretical insights but they are hardly tractable for
empirical work with many locations.

3The EC has accepted the chain of substitution argument in its most general form—by
considering a global market instead of a set of local markets when local markets’ overlaps
are large enough—in cases M.1221 and M.1684.
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Generally speaking, I analyze a linear-quadratic network game, with
firms competing in prices. This type of games has been studied in the
literature, see e.g., Ballester et al. (2006), Ballester and Calvó-Armengol
(2010). These authors, as well as Bramoullé et al. (2014), also remark that
a linear-quadratic network game can be rationalized with linear-quadratic
utility functions. I follow up on their remarks with a formal specification
suitable for studying price competition. Bloch and Quérou (2013) also ex-
plore linear-quadratic games where several locations can be owned by the
same firm, but they give a behavioural foundation to their model due to a
different focus of their paper.

My research goal is to develop a model which can be used for prelim-
inary assessments of mergers of firms with hundreds or thousands of sale
locations. Such a model needs to be robust, e.g. a model with poten-
tially multiple equilibria is not, and it needs to work with minimal data
requirements as otherwise it can never be used in practice by the parties
or the EC. The model that I develop is a specialization of the more general
models considered in the literature. This specialization is not arbitrary but
developed so as to adhere to my research goal.

To demonstrate that my network approach is indeed practically feasible,
I analyse a past merger case of two Dutch supermarket chains, Jumbo and
C1000. The parties and their competitors had between themselves 4,149
shops at the time of the merger. I show how to use my approach to as-
sess post-merger price increases using no more information that is typically
available on such a merger case. Additionally, I compare the results of the
network approach with the results of the local markets approach currently
used by the EC. While for many supermarkets both approaches give com-
parable results, there is a number of supermarkets where the local markets
approach is strongly biased.

Using a local markets approach effectively results in a geographic market
definition that is too narrow, because it does not account for the chain-of-
substitution effects. Whenever this narrow definition excludes the shops of
the competitors, the EC can overstate expected price increases. Similarly,
but more consequential from the practical perspective, whenever this nar-
row definition excludes the shops of the parties, the EC can substantially
understate the expected price increases. These biases are not simply theo-
retical but are found in practice, as my analysis of the Jumbo and C1000
merger reveals.

The rest of the paper is organized as follows. In Sections 2 and 3, I setup
and solve a general model of mergers on networks. In Section 4, I work
through an example with a merger over a graph of 6 shops. In Section 5,
I apply my methodology to a past merger case of two Dutch supermarket
chains, and I compare the results with those obtained when following the
EC approach. Section 6 concludes.
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2 Model Setup
There are M firms and N shops. The ownership structure is given by ma-
trix f such that fij = 1 whenever firm i owns shop j and fij = 0 otherwise.
I impose

∑
i fij = 1, i.e. only one firm can own a given shop. Then

si = {j|fij = 1} (1)

gives the set of all the shops owned by firm i and

v(j) =
∑
i

ifij (2)

gives the firm that owns shop j.
Every shop i sets its own price pi. In practice, firms can sometimes have

uniform price policies so that each shop belonging to the same firm sets
the same price. However, product quality (e.g., product variety in grocery
stores) and service quality (e.g., opening hours, queue waiting times) may
still vary between the shops. The quality effectively constitute the negative
of a price: higher quality is more costly for the firms to produce and it
is beneficial to consumers. Therefore the assumption that prices can vary
across shops owned by the same firm is generally preferable to the alternative
assumption of a single price. The fact that the EC analyzes local markets in
such merger cases instead of a single national market further corroborates
this logic.

There is a number wi of consumers located around each shop i. Con-
sumers can shop at their own location as well as at the neighbouring shops.
Formally, let g be an adjacency matrix such that gij = 1 if consumers from
location j can shop at location i and gij = 0 otherwise. By construction,
gii = 1. An equivalent interpretation is that whenever gij = 1 shop i puts
competitive pressure on shop j.

If shop 1 is a specialized grocery store and shop 2 is a supermarket, then 2
puts competitive pressure on 1 whereas 1 likely puts no competitive pressure
on 2. To be able to model such situations I allow g to be asymmetric, i.e. a
network.

Let
N+

i = {j|gji = 1} (3)

denote the in-neighbourhood of i. N+
i is a set of all the shops that put

competitive pressure on shop i, plus shop i itself.
Following Häckner (2000),4 a representative consumer located at i has

4There is a typo in that paper on p. 234. In the utility definition it should be either
γ
∑

i 6=j qiqj or 2γ
∑

i>j qiqj as otherwise the formula is not consistent with Singh and
Vives (1984).
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utility Ui defined as follows:

Ui = α
∑
j∈N+

i

qij −
1

2

∑
j∈N+

i

q2ij + γ
∑

k,j∈N+
i

k 6=j

qijqik

+ q0

= α
∑
j

gjiqij −
1

2

∑
j

gjiq
2
ij + γ

∑
k,j:k 6=j

gjigkiqijqik

+ q0, (4)

where qij is the amount of goods that consumer located at i buys at location
j, q0 is the outside good, α > 0, and 0 ≤ γ < 1. With this γ range
the goods offered at different shops are gross substitutes. The associated
budget constraint is given by∑

j∈N+
i

pjqij + q0 ≤ I. (5)

Define
qj =

∑
i

wiqij (6)

to be the total amount of goods purchased at shop j. Then the profits of
firm i, which equal the sum of the profits of its shops, are given by

πi =
∑
j∈si

qj(pj − c) =
∑
j

fijqj(pj − c), (7)

where c denotes marginal costs.
The timing of the model is as follows. In period one the firms simulta-

neously set the prices in their shops. In period two consumers shop so as to
maximize their utility given the prices. I focus on the Nash equilibrium of
this game.

Games where players have incomplete information about the network
have received attention in the literature. For example, Galeotti et al. (2010)
assume that each player knows his node’s degree but not the degree of his
neighbours. Where does the current model stand when we consider the in-
formation requirements for the players? Do we assume that the firms know
their competitors, the competitors of their competitors, etc.? While assum-
ing such knowledge might be unrealistic, this assumption is not required. For
the considered Nash equilibrium to be a practical solution concept it suffices
to assume that the firms know the residual demand on their products given
the prices of their competitors. This is a milder assumption that is satis-
fied if, for example, firms regularly conduct marketing research to reveal the
demand they face.
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3 General Equilibrium
Denote with di = |N+

i | =
∑

j gji the in-degree of shop i. From (4) and (5)
it follows that the consumer utility is maximized when

qij = gji

(
βi + δi

∑
k

gkipk − ηpj

)
, (8)

where

βi =
α

1 + γ(di − 1)
, (9)

δi =
γ

(1− γ)(1 + γ(di − 1))
, (10)

η =
1

1− γ
. (11)

Summing up over i we obtain

qj =
∑
i

gjiwiβi +
∑
i,k

gjigkiwiδipk − ηpj
∑
i

gjiwi. (12)

Substituting this expression for qj into (7) and differentiating πr with respect
to pt (whenever frt = 1) gives

∂πr
∂pt

= art +
∑
j

brtjpj − htpt, (13)

where

art =− c
∑
i,j

frjgjigtiwiδi + ηc
∑
i

gtiwi +
∑
i

gtiwiβi, (14)

brtj =(1 + frj)
∑
i

gjigtiwiδi, (15)

ht =2η
∑
i

gtiwi. (16)

Putting all the first order conditions together and solving gives the prices
in the general equilibrium:

p = X−1y, (17)

where Xij = bv(i)ij−1i=jhi, yi = −av(i)i, and 1A = 1 if A is true and 1A = 0
otherwise.

It is straightforward to derive sufficient second order conditions for the
profit maximization problem. Whenever shops t and k belong to firm r
(frt = 1, frk = 1) we have

∂πr
∂pt∂pk

= brtk − 1t=kht. (18)
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Figure 1: A Merger Example on a Graph
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For each firm r I require the Hessian matrix
{

∂πr
∂pt∂pk

}
to be negative semidef-

inite. Then πr is concave for each r and (17) gives profit maximizing equi-
librium prices.

A block-diagonal matrix is negative semidefinite if and only if all the
block submatrices are negative semidefinite. Further, renumbering both
rows and columns in the same way does not change whether a matrix is
negative semidefinite or not. Therefore the Hessian matrices for all firms
are negative semidefinite if and only if matrix Ω is negative semidefinite,
where

Ωij = bv(i)ijfv(i)j − 1i=jhi. (19)

Hence, to check whether the second-order conditions for profit maxi-
mization are satisfied we simply need to check whether matrix Ω is negative
semidefinite. In the example and the merger study that follow, the second-
order conditions have been checked and they hold.

4 Example
Consider the example depicted in Fig. 1. There are 4 firms denoted A
through D. Between them they have 6 shops denoted 1 through 6. Firms C
and D are planning a merger. What would be the expected price increase
across all the shops?

In this example we have

g =



1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 1 1 0
0 0 1 1 0 1
0 0 1 0 1 1
1 1 0 1 1 1

 . (20)
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Figure 2: Example Analysis
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Let f∗ denote the ownership matrix before the merger and f∗∗—after the
merger. Then

f∗ =


1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 (21)

f∗∗ =

1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 1

 . (22)

Finally, for this example take α = 1.0, γ = 0.9, c = 0, wi = 1.
Then from (17) for each shop i we can compute prices before and after the

merger, denote them respectively p∗i and p∗∗i . These are the prices from the
network approach. However, the EC uses the local markets approach. We
can emulate the local markets approach by considering each shop together
with its closest neighbours as a separate graph. For example, the graph
centered around shop 5 includes shops 5, 6, and 3. For each such subgraph
j let p̃∗ji and p̃∗∗ji denote the prices of shop i before and after the merger.

Fig. 2, left side, plots p̃∗∗ii /p̃
∗
ii against p∗∗i /p∗i for i ∈ {3, 5, 6}, i.e. for

the shops of the merging parties. We can see that the expected increases
in prices are completely opposite depending on the chosen approach. If we
use the local markets approach, then the market around shop 5 becomes a
monopoly and a four-fold price increase is expected. Whereas if we use the
network approach, the price rise at 5 is the smallest among the shops of the
merging parties because the price at 5 is limited by the price at 6, which in
turn continues to be under competitive pressure from the three neighbouring
shops. And the situation is just the opposite when we look at 3. According
to the local markets approach there is no expected price increase, because
the local market around 3 does not change after the merger. However,
according to the networks approach this area is most problematic, because
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the only remaining competitor in the area, shop 4, is now surrounded by the
shops of the merging parties that are all raising prices.

In practice, the EC often will not compute price increases as such but
rather approximate them with HHI increases. Fig. 2, right side, plots
HHI increases computed on the respective neighbourhood subgraphs against
p∗∗i /p∗i . The outcome is the same: the local markets approach yields results
that are completely at odds with the results from the network approach.

5 Merger of Jumbo and C1000
In Section 4 we have seen that it is possible to construct an example, where
HHI increments computed for local catchment areas give wrong information
about the expected price increases. This problem arises, because analysing
local catchment areas does not take chain of substitution effects into account.
In other words, there are examples where the local markets approach with
its partial equilibrium analysis of horizontally differentiated markets is a
very poor approximation to the network approach, which employs general
equilibrium analysis of these markets.

Does the same problem manifest itself in practice? In principle, this
need not be the case. The example was specifically chosen to demonstrate
the problem and it is conceivable that in real cases such a problem does
not arise. However, if it does, that means that wrong problematic areas are
given attention in the type of mergers we consider, that wrong divestments
are chosen, or even that wrong clearing or blocking decisions are made.

To asses the significance of chain of substitution effects in practice, and
to demonstrate how my model can be applied to an actual case, I revisit
a Dutch merger of two supermarket chains, Jumbo and C1000, that took
place in the beginning of 2012.5 The data on floor sizes and addresses of all
Dutch supermarkets prior to the merger is available from a third party (On-
dernemers Pers Nederland). I have geocoded the addresses using Google’s
geocoding service. In total, there were 4,149 supermarkets with complete
information about them in December 2011, out of which 461 belonged to
C1000 and 271 belonged to Jumbo. I will skip over the further details of
this merger as they are irrelevant for the following exercise. An interested
reader is referred to Argentesi et al. (2016), which is a post merger study
commissioned by the Dutch Competition Authority (ACM).

In this merger case, the ACM has considered each locality as a sepa-
rate market, and there has been no further analysis of catchment areas of
individual shops. Such geographic definition is problematic, because big lo-
calities such as Amsterdam or Rotterdam will never raise competition con-
cerns, even if the market power is substantially increased after the merger

5See the ACM decision 7323/81 (in Dutch).
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Table 1: Catchment Area Definition

Shop Size Drive Time Distance

Below 280 m2 5 min. 0.5 miles
280–1000 m2 5–10 min. 0.75 miles*
Above 1000 m2 10–15 min. 1.25 miles*

Source: Freeman et al. (2008), see paras. 12, 15, 4.102, 4.103. *The distances for mid-
sized and large shops are derived to be proportional to drive times (not present in Freeman
et al.).

in certain areas in those localities. The recent practice of the EC of draw-
ing catchment areas around each shop is aimed to addresses precisely this
problem. However, as I argue in this paper, the EC practice does not take
chain of substitution effects into account, which might be problematic in its
own way.

To study the EC practice, I substitute the ACM geographic market def-
inition with catchment areas. I adopt the definition for a catchment area
from Freeman et al. (2008), which is a study conducted by the UK Compe-
tition and Market Authority. This study is one of the most comprehensive
studies to date on catchment areas of supermarkets, and their definition is
based on the analysis of consumer purchase data.

Freeman et al. (2008) define a catchment area in terms of drive times,
and further differentiate between shops of different sizes. Their definition
is reproduced in Table 1. I adopt their definition but replace drive times
with corresponding distances. While the definition in terms of drive times
is more accurate, for the purpose of my comparative analysis it suffices to
use the simpler definition in terms of distances.

Freeman et al. (2008) further stipulate that a bigger shop puts compet-
itive pressure on a smaller shop but that a smaller shop does not put com-
petitive pressure on a bigger shop (asymmetric competition in the product
market). Consequently, I set gij = 1 if 1) shop j falls within the catchment
area of shop i, and 2) shop i belongs to the same size class as shop j, or
to a bigger size class. Otherwise I set gij = 0. So, using a network allows
us to capture the essential elements of the product and geographic market
definitions that are typically used in spatial mergers.

The resulting network consists of 1,253 weakly connected components,
with the largest component having 172 shops. For any given component,
the merger can impact the corresponding prices only when the shops of
both merging parties are present in that component. I obtain that there
are 91 affected components with a total of 1,658 shops, which are shown in
Fig. 3 (the shops from the non-affected components are shown as dots in
the figure). The largest affected components correspond to the main Dutch
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cities, albeit there are many smaller affected components scattered around
the country.

So far, we have constructed the network showing which shops put com-
petitive pressure on which shops, and that gives us matrix g. The ownership
matrices before and after the merger, namely f∗ and f∗∗, follow directly
from the data. What remains is to calibrate the following parameters of the
model: the number of consumers at each location (wi), the overall strength
of the demand (α), the extend to which the products from different shops
are substitutes (γ), and the marginal costs (c).

First, consider the vector of weights w. From eqs. (14)–(17) it imme-
diately follows that the equilibrium prices are homogeneous of degree zero
with respect to the weights, i.e. pi(kw) = pi(w). Hence, we only need to
define the weights up to a scalar.

Preferably, we would use the data on population density at each loca-
tion i to define wi. However, even in the absence of such data, a reasonable
approximation can be made if we are ready to assume that the industry is
in a state of long-run equilibrium. Let vi be the size of shop i (I am using
floor size, which is available in my dataset). Then, assuming a long-run
equilibrium, wi can be chosen so that qi = vi. In practice, this procedure
can be numerically demanding. For example, in our case we need to numer-
ically solve 172 equations in 172 unknowns when calibrating the weights for
the largest component of the network. My goal in this paper is to recom-
mend a practically feasible alternative to the current approach of the EC. I
therefore suggest to simply use wi = vi as an approximate calibration.

Next, let us turn to α and c. We will need the following proposition (the
proof is in the appendix).

Proposition 1. In the equilibrium, the absolute markup, pi − c, is propor-
tional to α− c. That is, for any α1, c1 and α2, c2 we have

pi(α1, c1)− c1
α1 − c1

=
pi(α2, c2)− c2

α2 − c2
.

An immediate corollary of the proposition is that the model is homoge-
neous of degree 1 in α and c. That is,

pi(kα, kc) = kpi(α, c). (23)

Hence, for the purpose of the analysis of relative prices increases we can
normalize the model by imposing

α+ c = 1. (24)

Let Li = (pi − c)/pi be a Lerner index for shop i. Let L =
∑

i Li/N
be the average Lerner index across all shops. Proposition 1, together with
α+ c = 1, allows us to compute α and c if L is given. First, set α1 = 1 and
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Figure 3: Dutch Supermarkets

The Hague Area

The map shows the locations of Dutch supermarkets in December 2011. If supermarket i
puts competitive pressure on supermarket j, but not the other way around (gij = 1,
gji = 0), then these supermarkets are connected with a cyan line. If the competitive
pressure is mutual, then the supermarkets are connected with a black line. The lines
are drawn only between those supermarkets that might be affected by the merger (the
corresponding network has shops from both merging parties). Supermarkets that cannot
be affected by the merger are shown as standalone dots. The Hague area is magnified as
an example.
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c1 = 0 (any arbitrary α1 and c1 can be used in this first step) and compute
the corresponding equilibrium prices, which we denote with p1i . We want to
find α and c such that

1

N

∑
i

pi(α, c)− c

pi(α, c)
= L. (25)

Using Proposition 1 and using α+ c = 1, we obtain

1

N

∑
i

c

(1− 2p1i )c+ p1i
= 1− L. (26)

Eq. (26) can be solved numerically to obtain c given L. I use L = 0.05,
which, according to Freeman et al. (2008), is the average Lerner index in
the supermarket industry.6

It remains to choose the degree of substitution γ. Preferably, γ should
be estimated based on the actual consumer behaviour. However, just like
with the weights, we can make a reasonable choice of γ even in the absence
of additional data if we assume a long-run equilibrium. Specifically, in the
long-run equilibrium the profits of all shops should be equal as otherwise
it would be profitable to move shops from less profitable locations to more
profitable locations.

Following this logic, I propose to choose γ so that the coefficient of vari-
ation computed over the equilibrium profits is minimized. I use coefficient
of variation instead of variance, because γ also influences the average profits
and coefficient of variation is scale-invariant while variance is not. While I
do not have data on fixed costs, I can simply compute coefficient of vari-
ation for each size class (assuming similar fixed costs within a size class).
However, from my experiments it turns out that considering different size
classes has little impact on the optimal gamma, therefore I simply group all
shops together. Formally,

γ̂ = argmin
γ

∑
i(πi(γ)− µ(γ))2

µ(γ)
, µ(γ) =

∑
i πi(γ)

N
, (27)

where the summation is done across all shops.
Following the procedure outlined above I obtain α = 0.55, c = 0.45, and

γ = 0.39. Having the model calibrated, we can proceed with calculating the
prices before and after the merger. The result is depicted in Fig. 4, top left
panel; only the shops from the affected components are shown in the figure.
The prices before and after the merger both vary between 0.46 and 0.5. The
prices at most locations are hardly affected the merger. Only at 71 out of
1,658 potentially affected locations is there a price increase of more than
1%, with a maximum increase of 2.5%.

6See para. 5.46.
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Figure 4: Merger Analysis
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We can use the same network g and weights w to compute HHI before
and after the merger in accordance with the local markets approach of the
EC. Specifically, for each shop i I compute HHI using all shops j such that
gij = 1 (by construction, this set always includes shop i itself), with weights
wj . A picture similar to earlier obtains, see Fig. 4, top right panel. Only
at 314 locations is there an HHI increase of more than 250, with the largest
increase being 5000 (the numbers in the figure are scaled down by 10,000).

We can compare now the approximate local markets approach to the
theoretically consistent network approach that I propose in this paper. This
comparison is done in Fig. 4, bottom left panel, which plots predicted prices
increases against HHI changes. At many locations where a substantial price
increase is predicted, both approaches yield consistent results. Crucially,
however, there is a number of locations where HHI is a poor approxima-
tion of the predicted price increase. At some locations the change in HHI is
high, whilst no substantial price increase is expected. This bias is less con-
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sequential and can be corrected as long as further detailed analysis is per-
formed for these locations. However, the presence of this bias highlights the
necessity of such further analysis. No conclusions should be drawn based
on HHI alone. A more consequential bias can be seen at those locations,
where there is no change in HHI but there is a high expected price increase.
Such a bias occurs precisely, because analysing individual catchment areas,
e.g. when computing HHI, misses on the chain-of-substitution effects. This
bias means that the EC might be missing on potentially problematic areas
in their initial screenings in this type of merger cases.

The network approach I propose in this paper is flexible. When data
are available, store and consumer locations can be decoupled, demand pa-
rameters as well as catchment area delineations can be estimated from the
consumer purchase data, additional product varieties can be introduced. In
other words, the proposed methodology can be used for a complete merger
simulation. Having said that, my primary goal is to advocate this approach
for preliminary screening, as in its simplest form the only additional data
required is the average Lerner index in the industry. The rest of the data
are the same data as used when computing HHI increases, and so have to
be collected in either case. Importantly, this approach is feasible within the
time constraints imposed by first stage investigations, because the complete
algorithm has been outlined and can be preprogrammed in advance of the
data analysis. For instance, the analysis done in this paper is fully auto-
mated.7

6 Concluding Remarks
The EC plays a fundamental role in ensuring a fair, competitive, and united
European market. The decisions of the EC have direct impact on business
profits and on consumer welfare. In this paper, I show that the local mar-
kets approach that the EC uses for mergers of firms with multiple points of
sale can yield incorrect predictions regarding post-merger price increases. I
propose an alternative network approach, which has strict theoretical foun-
dations and which, in first approximation, requires no more data than is nor-
mally available on such merger cases. Given the feasibility of the proposed
network approach, there is no reason not to advice a change of practice to
the EC.

Every model is an approximation. And while some parts of a model can
be viewed as approximations that are too rough to be practically useful in
their own right, the model itself might allow enough flexibility to compen-
sate for those rough approximations. One clear example is binomial trees
in derivatives pricing. The price does not just go up or down, but the big

7The relevant code (python) will soon be posted online. In principle, the code can be
readily used with the data from any other spatial merger.
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number of nodes compensates for this extreme approximation. And so it
is, in my opinion, with network models. The network theory has yielded
some interesting theoretical intuition, but its largest value added might lie
in practical applications. I use catchment areas as a basis for my network
construction. A catchment area is essentially a rough approximation of
transportation costs: zero till a certain threshold, and infinite after that.
However, when hundreds of such approximations are knit together within a
network, a richer structure emerges, which might well be a good approxi-
mation of the real world.

Appendix
Proposition 1. In the equilibrium, the absolute markup, pi − c, is propor-
tional to α− c. That is, for any α1, c1 and α2, c2 we have

pi(α1, c1)− c1
α1 − c1

=
pi(α2, c2)− c2

α2 − c2
.

Proof. In vector notation we have

p(α1, c1)− ιc1
α1 − c1

=
p(α2, c2)− ιc2

α2 − c2
, (28)

where ι denotes an all-ones vector.
It follows from (10), (11) and (15), (16) that X is independent of α and

c, hence
X−1y(α1, c1)− ιc1

α1 − c1
=

X−1y(α2, c2)− ιc2
α2 − c2

, (29)

or, equivalently,

y(α1, c1)−Xιc1
α1 − c1

=
y(α2, c2)−Xιc2

α2 − c2
. (30)

If we prove that (30) holds, then we also prove the proposition. Let us
consider y(α, c)−Xιc. By definition, we have

yi(α, c)− (Xι)ic = −av(i)i −
∑
j

(bv(i)ij − 1i=jhi)c. (31)

17



Dropping index restrictions, we can show that in general

− art −
∑
j

(brtj − 1t=jht)c

= c
∑
i,j

frjgjigtiwiδi − ηc
∑
i

gtiwi −
∑
i

gtiwiβi

− c
∑
i,j

gjigtiwiδi − c
∑
i,j

frjgjigtiwiδi + 2ηc
∑
i

gtiwi

=
∑
i

gtiwi(ηc− βi − cδidi) =
c− α

γη

∑
i

gtiwiδi, (32)

where we have used the following∑
i,j

gjigtiwiδi =
∑
i

gtiwiδi
∑
j

gji =
∑
i

gtiwiδidi. (33)

Given that 1/(γη)
∑

i gtiwiδi is independent of α and c, from (31) and (32)
it immediately follows that (30) holds.
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